Ideas for More Effective HF Antennas

Geography, Terrain, Siting and Operation

Dave Leeson, W6NL

© 2009 D. B. Leeson

Why a Better Signal?

Why a Better Signal?

- Emergency communications

 Other end may be marginal
- DX: Pileups from either end
 - Pileup: Break early
 - DXpedition: Better geographic coverage, rate
- Contesting
 - Competitive score, operator improvement
 - My particular interest, will use as examples
- Personal technology achievement

• Myth: 3 dB = Minimum detectable change

- Myth: 3 dB = Minimum detectable change
- Fact: That's <u>without a reference</u>
 - Contention: Competing against a reference
 - Weak signal: Competing against noise floor
 - Even 1 dB affects statistics of pileup or S/N

- Myth: 3 dB = Minimum detectable change
- Fact: That's without a reference
 - Contention: Competing against a reference
 - Weak signal: Competing against noise floor
 - Even 1 dB affects statistics of pileup or S/N
- "2 dB is a Ton," 20-40 dB is a galaxy!

What Makes a Difference?

- Propagation, Geography and Time
- Arrival Angles
- Terrain and Siting
- Antennas
- Station and operating

 F Layer reflection determined by ionization level, frequency and angle of incidence

 Variation with time of day, season & solar cycle

- F Layer reflection determined by ionization level, frequency and angle of incidence

 Variation with time of day, season & solar cycle
- Vertical return below critical frequency f_o

- F Layer reflection determined by ionization level, frequency and angle of incidence

 Variation with time of day, season & solar cycle
- Vertical return below critical frequency f_o
- Max oblique return frequency (MUF) higher than f_o, <u>depends on elevation angle</u>

- F Layer reflection determined by ionization level, frequency and angle of incidence

 Variation with time of day, season & solar cycle
- Vertical return below critical frequency f_o
- Max oblique return frequency (MUF) higher than f_o, <u>depends on elevation angle</u>
- Lower elevation angle yields higher MUF

Ionospheric Refraction

Vertical Incidence Return

Max. Usable Freq. vs. Time

- MUF at mid-hop
- f>MUF: Band open
- f<MUF: Band closed
- f>>MUF: Absorption
- Not really so simple

 Fading: Multiple paths
 - f<EMUF: D, E layers
 - Other complications

Signal Strength vs. Time

• f_o & MUF decrease toward higher latitude

- f_o & MUF decrease toward higher latitude
- Interesting things happen at equator

 Equatorial anomaly

- f_o & MUF decrease toward higher latitude
- Interesting things happen at equator

 Equatorial anomaly
- Variation with time of day
 - Gray line at terminator
 - Day-to-night paths more difficult

- f_o & MUF decrease toward higher latitude
- Interesting things happen at equator

 Equatorial anomaly
- Variation with time of day
 - Gray line at terminator
 - Day-to-night paths more difficult
- Population density: High contests, low DX

f_o vs. Location and Time

MUF vs. Location and Time

Path Considerations

- Where is the ham population?
- Day/night overlap (longitude: time zone)
- Propagation from your location (latitude)
- Path from your location (auroral oval?)

Population Density

Day or Night Overlap

EA8/HC8 Day/Night Overlap to EU

Frequency and Angle are Related

- Critical frequency f_o depends on solar ionization
- Dependent on elevation angle:
 - MUF
 - Max hop length
 - Ground reflection efficiency

MUF is Higher at Low Angles

MUF is Higher at Low Angles

MUF is Higher at Low Angles

MUF Varies with Elevation Angle

What Makes a Difference?

- Propagation, Geography and Time
- Arrival Angles
- Terrain and Siting
- Antennas
- Station and operating

Elevation Angles: Statistical Avgs.

- Range from zero-30°
- IONCAP data from N6BV presentations
- Low angles: Band opens first, closes last
- Time: lower angles sooner and longer

Windowed Gain: FOM

- Gain only useful at angles with signals
- Flat: Is this the right weighting?
- Weight by probability?
- Weight by time?
- Also need NVIS (near vertical for close-in at f<f₀ critical frequency)

Weighted Window

- Might be more realistic
- 2%-98% within 1°-22°
- Try with signalstrength simulation to see if it's better
- NVIS not in statistics, used for close-in at night

Signal Strength 21 MHz 3el 35'

N6BV 18z

Signal Strength 21 MHz 3el 70'

N6BV 18z

Signal Strength 21 MHz 5el Stack

N6BV 18z

What Makes a Difference?

- Propagation, Geography and Time
- Arrival Angles
- Terrain and Siting
- Antennas
- Station and operating

Terrain Issues for Low Angles

Terrain Issues for Low Angles

- Most terrain is alluvial (flat)
 Complete cancellation of grazing (low angle) signal
- Foreground slope or salt water: low angle
- Clearance of obstacles for lowest angles
- Ground reflection coefficient vs. angle
 Grazing angle: lowest loss (like a mirage)

"Tip the Picture" Slope Model

Proceedings of the Institute of Radio Engineers Volume 20, Number 4

SOME EFFECTS OF TOPOGRAPHY AND GROUND ON SHORT-WAVE RECEPTION*

A pril, 1932

By

R. K. Potter¹ and H. T. Friis²

(¹American Telephone and Telegraph Company, New York, N. Y.; ²Bell Telephone Laboratories, New York, N. Y.)

Chain Home HF Radar 1937

14.0 8.0 6.0 5.0 4.0 18.0 100 MAIN Z . 1 90 Z = 2 3.0 80 GAPFILLER ANGLE HEIGHT 70 OF IN. ELEVATION THOUSANDS. 63 IN 0F. DEGREES FEET 2.0 MAIN 50 40 30 1.0 20 **"Under** The 10 Radar" C 0.0 700 250100 150RANGE IN NAUTICAL MILES Fig. 6. Typical CH performance diagram

360' Towers, 26 MHz

W6NL Slope

Sloping Foreground Result

- Note these are heights above slope
- Good results with 70' tower, 50' above slope
- Use a separate antenna for NVIS
- Station has won Sprint and NAQP
- Model for HC8 station

Gain vs. Elevation Angle

dBi

Gain at Very Low Angle

Effective Tower Height Active Tower Height Ground Slope Projected Foreground Slope

What if No Slope?

- Salt water foreground
- Height, stacks to get narrow el. beamwidth
- Narrower az. beamwidth + auto rotators
- Guest op
- Vacation or remote station

What Makes a Difference?

- Propagation, Geography and Time
- Arrival Angles
- Terrain and Siting
- Antennas
- Station and operating

What About Antennas?

- Antenna modeling is now accurate
- Best designs have bandwidth, good pattern
- Gain increases with boom length, but by log(L)
 Diminishing returns and mechanical problems
- Make sure you get what you model
 - Adjacent antennas, structures kill pattern
 - Compare to reference
- Stacks: Good, not fully equivalent to slope

Max Gain for Full Coverage

$$G \approx \frac{33,000}{\theta_a \theta_e} = \frac{33,000}{30 \times 45} = 14 \text{dB}$$

Gain in dBi

What Makes a Difference?

- Propagation and Arrival Angles
- Geography and Time
- Terrain and Siting
- Antennas
- Station and operating

Station Maximized?

- Output power
- Coax loss
- Receiver capability in crowded band
- Antenna condition
- Signal quality: Don't cheat yourself

 No clicks, hum, distortion
- This will make your antennas better

Operator Maximized?

- Practiced, fluent in your mode(s), conditioning
- Learn "secrets" of project management
 - Show stoppers first
 - Control lead time, op and station ready
 - Integration takes most of the time
 - Don't make last-minute changes without recovery time
- How to get a seat at a big station?
 - Win something small (QRP, LP?), become known
 - Then learn from the best examples, see what they do
- This will make your antennas better

Queuing theory of Pileups

- <u>Service rate limited</u>
- Minimize service time
 - No extras, get a call
 - Receiving, logging key
 - Use split, std. phonetics
- Discipline pileup by actions, not words
 - Different pile every minute
 - Answer after one call
- Sign call "enough"

- Arrival rate limited
- Higher duty cycle
 - Beacon for "fish swimming by"
 - Different CQ message
- This can be max rate
 Easier receiving
- Keep CQing if rate
 But also S&P, SO2R
- Time is key here, too

Antenna Experiences to Try

- Put up temporary antennas
- Mobile or portable operation
- Try antenna ideas on Field Day
- Try operating in another part of the world
- Remote station operation?

Experiment Trumps Theory

- Compare antennas
 - Keep your reference antenna!
 - Or compare to known good station nearby
- Antennas are cheaper than rotators

 Spacing too close ruins higher band antennas
- Experiment confirm theory?

Antennas in HC8

on an equatorial mountain-top with slope

Antennas: Cheaper the Rotators

...and generally more reliable (K7NV prop pitch excepted)

Ten Years at HC8

-	.		Ξ.	-	1	-	=

