Loop Array
Runs Circles Around
The Beverage
What to remember?

K3NA 3-loop array:

- Low-band RX antenna
 - 160m & 80m
 - Insensitive to out-of-band signals
 - Tolerates wide range of ground conditions

- Compared to optimized, full-size beverage:
 - Equal or better performance
 - $< 1/3^{rd}$ space

- Works well “out of the box”
 - ~1 day assembly
 - Complex lab tools not required
Progress report:

K3NA loop array
Agenda

• Problem
 • Existing alternatives
 • New approach
 • Implementation
 • Results
 • Dual-band operation
 • Diversity reception
 • Variations
 • Future research
 • Summary
Problem

RX antenna:

- Freqs:
 - 160m DX
 - 1900-1920 kHz ("dragon" backup)
 - 80m CW
 - 75m SSB
- Beamwidth: max ~60°, reversible
Problem

NA & Europe

Asia

NA long path
Problem

RX antenna:

- Freqs:
 - 160m DX
 - 1900-1915 kHz ("dragon" backup)
 - 80m CW
 - 75m SSB
- Beamwidth: max ~60°, reversible
- Insensitive to local earth
Problem

RX antenna:

- Freqs:
 - 160m DX
 - 1900-1915 kHz ("dragon" backup)
 - 80m CW
 - 75m SSB
- Beamwidth: max ~60°, reversible
- Insensitive to local earth
- Easy assembly; minimal on-site adjustment
Agenda

- Problem
- **Existing alternatives**
- New approach
- Implementation
- Results
- Dual-band operation
- “To Do” list
- Summary
Existing alternatives

• Beverage antenna
Existing alternatives: Beverage antenna

- Well-known standard solution.
- Performance near salt water?
 - Try comparing NEC4 results.

feedpoint

- length 215m:
 - 160m = $1 \frac{3}{8} \lambda$
 - 80m = $2 \frac{5}{8} \lambda$

height 2m

2m ground rods

300 Ω
Existing alternatives:
Beverage antenna: NEC4 – average earth

NEC4 model output:
pattern map for entire sky
Existing alternatives:
Beverage antenna: NEC4 – average earth

Bottom edge: horizon
Existing alternatives:
Beverage antenna: NEC4 – average earth

Top edge: zenith
Existing alternatives:
Beverage antenna: NEC4 – average earth

- Rear
- 90° to left
- Boresight
- 90° to right
- Rear
Existing alternatives:
Beverage antenna: NEC4 – average earth
Existing alternatives:
Beverage antenna: NEC4 – average earth

Pattern gain in color:
• Scale: 0 db = peak gain
Existing alternatives:
Beverage antenna: NEC4 – average earth

Pattern gain in color:
- Scale: 0 dB = peak gain
- Color code at top right
Existing alternatives:
Beverage antenna: NEC4 – average earth

Pattern gain in color:
- Scale: 0 dB = peak gain
- Color code at top right
- Contours every 3 dB
Existing alternatives:

Beverage antenna: NEC4 – average earth

Pattern gain in color:

- Scale: 0 db = peak gain
- Color code at top right
- Contours every 3 dB
- White contour: -3 dB beam edge
Existing alternatives:
Beverage antenna: NEC4 – average earth

1825 kHz pattern:
• Main beam
Existing alternatives:
Beverage antenna: NEC4 – average earth

1825 kHz:
- 2 side lobes
 -12 to -15 dB down
Existing alternatives:
Beverage antenna: NEC4 – average earth

1825 kHz:
• rear lobe
 -15 to -18 dB down
Existing alternatives:
Beverage antenna: NEC4 – average earth

3650 kHz:
- Main beam: smaller, lower – OK
- More side lobes but weaker
Existing alternatives:
Beverage antenna: NEC4 – average earth

1825 kHz: numbers

- Gain: -9.8 dBi
- Rejection:
 40% sky below -15 dB of peak
 3% below -30 dB of peak

- RDF* = 8.4 dB

* fwd peak gain avg gain
Existing alternatives:
Beverage antenna: NEC4 – salty earth

1825 kHz: numbers

• Peak gain: -18.5 dBi in side lobes

• Rejection:
 1% sky below -15 dB of peak
 0% below -30 dB of peak

• RDF = 3.2 dB
Existing alternatives:
Beverage antenna

- Beverages do *not* work over high conductive earth.
- Beverages work fine *next to* salt water.
Existing alternatives

- Beverage antenna
- K9AY loop
Existing alternatives: K9AY loop

1825 kHz numbers
- Gain: -23.4 dBi \textit{requires pre-amp}
- Rejection: \textit{about 5 dB front-to-back}
 - 4\% sky below -15 dB of peak
 - 0\% below -30 dB of peak
- RDF = 4.0 dB
Existing alternatives

- Beverage antenna
- K9AY loop
- Short vertical array
Existing solutions:
Short vertical array

W8JI approach:
- Low-Q, lossy (swamped) elements:
 - Wide bandwidth.
 - Eliminates mutual coupling between elements.
 - No impedance variations.
- Matched to 75 Ω line.
- Combine verticals to form pattern
Existing solutions:
Short vertical array

Drawbacks:

• Requires:
 stable earth characteristics,
 ≥ 4 radials

• Each element tuned for SWR < 1.2 at band edges.

• Cannot use on two bands simultaneously.

W8JI 11 ft vertical with top hat
160m gain: -17.4 dBi
Existing alternatives

- Beverage antenna
- K9AY loop
- Short vertical array

What now?
New approach:
K3NA loop array

- Loop element:
 - Insensitive to earth characteristics.
 - 0.1λ circumference: nulls off sides
New approach: K3NA loop array

- Sharp side nulls at low elevation angles
- Gain: -9.5 dBi before matching
- Rejection:
 - 2% sky below -15 dB of peak
 - 0% below -30 dB of peak
 - RDF = 2.0 dB
New approach: K3NA loop array

- Match closely to 75 Ω line across band.
 - Coax now becomes freq-independent delay line.
- Combine elements to form pattern:
 - Spacing
 - Power ratio
 - Delay
New approach: K3NA loop array

Spacing = 70° at center freq:

160m: 31.51 m 103.4 ft ~220 ft overall
80m: 15.75 m 51.7 ft ~110 ft overall
beverage: 215 m 705 ft

Power:
front 0.54 middle 2.00 rear 1.00

Delay:
front 270° middle 135° rear 0°
New approach:
K3NA loop array

70° wide main beam. Other lobes ≤30 dB down.

- Gain: -9.7 dBi
- Rejection:
 - 54% sky below -15 dB of peak
 - 38% below -30 dB of peak
 - RDF = 8.0 dB
Existing alternatives:
Beverage antenna: NEC4 – average earth

1825 kHz: numbers

- Gain: -9.8 dBi
- Rejection:
 - 40% sky below -15 dB of peak
 - 3% below -30 dB of peak
 - RDF = 8.4 dB
New approach:
K3NA loop array

Compared to beverage:
- Pattern independent of earth characteristics.
- Much quieter outside of main beam.
- Significantly smaller space required.
Agenda

- Problem
- Existing alternatives
- New approach
- **Implementation**
- Results
- Dual-band operation
- Diversity reception
- Variations
- Future research
- Summary
Implementation

- Loop
 - Match
 - Phasing
 - Combiner
 - Preamp
 - Construction practices
Implementation:

Loop

160m mast:
20ft 1½in sch 40
UV-resistant electrical conduit
over ground rod
Guys: string

160m loop:
12m insulated AWG #14.
Top, bottom corners:
black (UV-resistant) cable ties.
Implementation:
Loop

Lab in the salt marsh:
K3NA's receive loop for 3B7C

Impact of different earth characteristics:

<table>
<thead>
<tr>
<th>land R</th>
<th>land X</th>
<th>marsh R</th>
<th>marsh X</th>
</tr>
</thead>
<tbody>
<tr>
<td>R ohms</td>
<td>X ohms</td>
<td>R ohms</td>
<td>X ohms</td>
</tr>
<tr>
<td>0</td>
<td>50</td>
<td>500</td>
<td>550</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>1500</td>
<td>2000</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>2500</td>
<td>3000</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
<td>3000</td>
<td>3500</td>
</tr>
<tr>
<td>4</td>
<td>250</td>
<td>3500</td>
<td>4000</td>
</tr>
<tr>
<td>5</td>
<td>300</td>
<td>4000</td>
<td>4500</td>
</tr>
<tr>
<td>6</td>
<td>350</td>
<td>4500</td>
<td>5000</td>
</tr>
<tr>
<td>7</td>
<td>400</td>
<td>5000</td>
<td>5500</td>
</tr>
<tr>
<td>8</td>
<td>450</td>
<td>5500</td>
<td>6000</td>
</tr>
<tr>
<td>9</td>
<td>500</td>
<td>6000</td>
<td>6500</td>
</tr>
<tr>
<td>10</td>
<td>550</td>
<td>6500</td>
<td>7000</td>
</tr>
</tbody>
</table>
Implementation

- Loop
- Match
- Phasing
- Combiner
- Preamp
- Construction practices

match

coax shield
current choke
Implementation:
Match

Match network goals:

- Balanced-unbalanced conversion.
- Match Z_{element} to Z_0 across band:
 - SWR < 1.07.
 - Identical phase delay through the network.
 - Stable over outdoor temp range.
- Tolerate 100 mW.
- Surge protection.
- Suppress currents on coax shield.
Implementation: Match

4-stage network to achieve double-resonance and low SWR across band.
Implementation: Match

• Theoretical match
Implementation:

Match

Add:
- Balun ⑤
- Surge protectors ⑥
Implementation:
Match: K2TJ monte carlo analysis

- Above model used for simulation
- Assumed $R = 2\Omega$ for 160m and 80m
- $L_{\text{ant}} = 9.3\ \mu\text{H (160m)}\ L_{\text{ant}} = 4.1\ \mu\text{H (80m)}$ – rough approximation
- Transformer leakage inductance will probably have a small effect – absorb into C_1.
Implementation:
Match: K2TJ monte carlo analysis

- C1, C2, C3, L3 used as random variables.
- Simulated for tolerances of 1%, 5%, and 10%.
- R1 kept at constant tolerance of 1%.
- 30 iterations of component values within the tolerance range for each sweep.
Implementation:

Match: K2TJ monte carlo analysis

As designed:

freq (100.0kHz to 4.000MHz)
Implementation:
Match: K2TJ monte carlo analysis

Even with 1% tolerance parts, alignment required to bring matching network to near-identical performance.
Implementation:
Match
Implementation: Match

Actual 160m match:

Theoretical:

1.10 SWR circle

1.12 SWR circle

Stop: 1950 kHz

Actual 160m match:

Theoretical:

1.12 SWR circle

1800

1850

1925

1900

Stop: 1950 kHz
Implementation:
Match

Actual 80m match:
Implementation: Match

- Trimmer capacitors not temperature-stable.
- Used small parallel capacitors to trim as close as possible to identical behavior.
Implementation:
Match

Balun construction:
• Variation on W8JI design
 o 2×binocular cores
 o type 73
 FairRite 2873000202 or Amidon BN 73-202
 o AWG #26 Teflon wire
 o 10 passes,untwisted

• Note: R_{load} is low, increasing phase error, losses. Minimize with double core stacking and special winding pattern.
Implementation:

Match

1:1 balun - two Amidon BN-73-202 stacked - AWG#24 TFE insul

10 passes

minimized loss
Implementation:
Match

Temperature-stable inductor core material:
MPP: moly-permaloy powder

Magnetics
160m C0-55122
80m C0-55123

“Freezer test”:
Stable match down to -15C.
Implementation:
Shield current choke

Two stages:
- FairRite 2843009902 type 43 binocular core
- 75Ω video cable
- 5 passes per stage
Implementation:

Match: shield current choke

- Located between matching network and feedline of each element.
- $Z_{\text{shield}} > 1 \, \text{k}\Omega \ 1\text{–}30 \, \text{MHz}$.
- First 12 units measured:
 - Insertion loss $< 0.1 \, \text{dB}$
 - Phase delay $30\text{-}32^\circ$ at $30 \, \text{MHz}$
 - Shield current loss:
 - min -18 to $-20 \, \text{dB}$ at $1.8 \, \text{MHz}$
 - max -32 to $-33 \, \text{dB}$ at $15.1\text{-}16.4 \, \text{MHz}$
Implementation

- Loop
- Match
- Phasing
- Combiner
- Preamp
- Construction practices
Implementation: Phasing

Simple, brute force approach:

- Uses:
 - ~155m RG-6 on 160m
 - ~80m RG-6 on 80m.
- Unidirectional.
- Pattern stable across band.
Implementation: Phasing

1800 kHz
Implementation: Phasing

1850 kHz
Implementation: Phasing

1925 kHz

- Main beam narrower at high elevation
- Rear lobe increased ~ 9 dB
Implementation: Phasing

Reversible approach:

- Uses:
 - ~266m RG-6 on 160m
 - ~130m RG-6 on 80m.
- Relays in combiner switch front/rear loops.
- DC sent thru coax from shack to activate relays.
Implementation

- Loop
- Match
- Phasing
- Combiner
- Preamp
- Construction practices
Implementation: Combiner

- Extracts Vdc from coax to station.
- Protection measures:
 - surge: gas discharge tube, fuse
 - voltage: zener, steering diode
 - spikes: snubbers, bypass caps
Implementation: Combiner
Implementation: Combiner

- Exchange front/rear loops to reverse pattern.
- Axion FP2 relays:
 - Inexpensive
 - Hermetically sealed
 - Gold contacts
 - Negligible loss, SWR
Implementation: Combiner
Implementation: Combiner

- Combine loops in required ratio: 0.54 : 2.00 : 1.00 13 : 24 : 12 (front:middle:rear)
- Ratio error <0.1%
- Phase delay errors: front = ref mid = -2.2 to -2.5° rear = +1.0° (less on 160m)
- Flat winding best.
Implementation: Combiner
Implementation: Combiner

- Xformer output:
 160m: 14.5 + j2.5
 80m: 14.5 + j4.7

- T2: step-up 7:16
 160m: 76 + j15
 80m: 79 + j38

- Parallel cap cancels residual X.
Implementation: Combiner
Implementation

- Loop
- Match
- Phasing
- Combiner
- Preamp
- Construction practices
Implementation:
Pre-amp

- -14 dB loss in K2TJ model of matching network.
- DX Eng pre-amp in shack.
- Pre-amp disabled on transmit.
- Pre-amp protected by bandpass filter.
Implementation

- Loop
- Match
- Phasing
- Combiner
- Preamp
- **Construction practices**
 - Anti-oxidant / anti-seize
 - High-dielectric silicone grease
Implementation:
Construction practices

Aluminum, copper conductive petroleum base

Prevents:
- Oxidation
- Moisture penetration.
- Intermittents.
- Galling / binding.
Implementation:
Construction practices

Insulating lubricant.
Fills voids, seals.
Also good under heat shrink.

Flexible ring seals threads against box.
Agenda

• Problem
• Existing alternatives
• New approach
• Implementation
• Results
 • Dual-band operation
 • “To Do” list
• Summary
Results:
Forward – reverse

~15 dB front-back on AA1K
Results:

S/N vs beverage

Same or quieter S/N ratio than beverage.
With preamp, -5 dB weaker than beverage:
Consistent with design.
Band noise above receiver floor.

AA1K normalized for both antennas in this recording:
Results

Even “out of the box” with no tune-up, very competitive with full-size beverage.

Next R&D steps at W1KM:

- Correct for phase delay errors in combiner.
- Verify alignment.
- Blind test during contests.
- Attempt to measure patterns.
Agenda

- Problem
- Existing alternatives
- New approach
- Implementation
- Results
- Dual-band operation
- “To Do” list
- Summary
Dual-band operation

Approach #1:

• 3 loops on 3 posts spaced for 160m:
 o Clean pattern on 80m.
 o Much narrower.

• But...
 o Matching network?
 o SO2R or multi-op access to antenna?
 o May be solved with more R&D time...
Dual-band operation

Approach #2A
• 3 loops for each band
• Separate supports
• Minimize interaction:
 \[\geq 8\text{m} \text{ (26 ft) separation} \]

 80m front, rear loops “face” 160m loops.
 (Exploits nulls.)
Dual-band operation

Approach #2B:

- 3 loops for each band
- 80m and 160m loops share common supports
- 4 supports needed
Dual band operation

Which is better?
Dual band operation

Problem with common center:

- Shifts 80m loop Z
- Reduces 80m loop output -3 dB

160m loop:
 impact immaterial for either approach.
Problem: 80m rear/side degraded!

80m should be:
Dual band operation: Dummy loop

“Dummy” 160m loop:
• not part of 160m array!

This 160m loop does not require an 80m dummy loop.
Dual band operation:
Dummy loop

Dummy loop terminated in conjugate match.
Agenda

- Problem
- Existing alternatives
- New approach
- Implementation
- Results
- Dual-band operation
- “To Do” list
- Summary
“To Do” list:
Diversity RX

Diversity reception
 listening in 2 directions
 one in each ear

Solution:
 • Split output of each loop.
 • Two sets of delay lines / combiners.
“To Do” list:
Narrower pattern

Down to 35° main beam
Even quieter!

Solution:

• Two parallel arrays, combined in phase.
• $\sim \frac{1}{2} \lambda$ separation required for full effect.
“To Do” list:
Smaller footprint

Can array be even smaller?

Potential solution:
• 2 loops, $\frac{1}{8} \lambda$ in-line separation
• 145° delay
• Same match, current choke
• Combiner: change transformers.
"To Do" list:
Faster assembly

Faster assembly time?

Potential solution:
• Fiberglass mast with crossarm(s): eliminate guys
“To Do” list:
R&D thoughts

- Is assertion of 0.1λ limit to circumference correct?
- Dual-band matching network?
- Measure out-of-band TX pickup; evaluate danger to preamp.
Summary

K3NA loop array

- Performance
 Equal/better than beverage of 3× length
- Tolerates wide range of ground conditions without adjustments.
- 2-band system may be co-located.
- Appears to be replicable.
Acknowledgments

Andy Mui K2TJ
Grant Bingemam KM5KG
Al Rousseau W1FJ
Greg Cronin W1KM
L B Cebik W4RNL
Tom Rauch W8JI
John Brosnahan WØUN
Five Star DX Assoc
Radio Expeditions Inc