The LFA (Loop Fed Array) Yagi

Not a traditional Yagi in many ways!

British Army mobile installation of LFA Yagis, Salisbury, UK

By Justin Johnson G0KSC Dayton 2014

Agenda

- Who is GOKSC?
- The LFA Yagi, what is it?
- LFA Yagi benefits
 - Including design principles
- Design to real World transition?
- Installation and results

Who is GOKSC?

- Focus on low-noise antennas due to noisy UK location
- YU7EF the father of all LN Yagis!
 - Gain, Gain, Gain culture
 - SNR in receiver chain but not antenna?
- Removal of noise through pattern
 - Matching loss (matching devices)
 - Closed loops
- LFA Yagi, OP-DES, LFA-Q, OWL
- Design for commercial apps.
 - Government, military
- Best performance LN for VHF?
 - VE7BQH list

The LFA Yagi – What is it?

- Closed rectangular loop
 - Flat laid on boom
- Pattern, Impedance, B/W
- 50Ω Direct Feed
 - No matching device
 - QRO capable
- Loop 180 degrees out of phase
- Close spaced Reflector/D1
 - 'driver cell'
- Wide band, flat performance
 - Flat gain & F/R
- Very Low Noise capable
 - Closed loop
 - Tight pattern possible

LFA-Q Quad-style beam

- All elements up-right 'LFA loops' (YU7XL concept)
- Quad performance advantage to around 7 elements Rigid setup

LFA Yagi benefits

- Closed loop means QRO capable
 - Lower noise RX?
 - 50 Ohm direct feed- matching loss minimised
 - Quad-style patterns on smaller antennas
- No matching devices
 - Antenna modelled as finished product
 - No 'foreign objects' added after design
 - No matching loss
 - Direct feed with 1:1 balun or choke
- All elements and feed point in-line
 - No Elevation plane distortion
 - The perfect X-pol antenna basis!

LFA Yagi benefits - continued

- QRO and Pattern Symmetry even at VHF/UHF
 - HB9Q Dish feed system
- Far greater extension to modelling ability with loop
 - Split dipole limitations
 - No matching structures
- Optimisation without lobes
 - Side lobe reduction huge
 - Performance wideband
 - High F/R
 - Minimum Return Loss

LFA Yagi benefits - continued

- Closer-spaced 'Driver cell' for more bandwidth including performance flat-line
 - Flat-line gain and F/R
- High end Sky temp. & G/T
- Design principles LFA gives
 - Greater control over opt.
 - X-pol distortion minimised
 - Thru-boom elements
 - Minimised eddy current
 - Auto grounded front loop
 - Easy final DE adjustment
 - Eznec assumes zero tails

LFA Design Principles

- Traditional Yagi low impedance means better performance?
- 'Ski Slope' impedance & performance curves
- Poor wet weather results
- shift in bad weather
- YO Trait?
 - YO used extensively
 - YO extended boom
 - YO 'as good as the author!'
- LI means narrow bandwidth?
 - NO! Design principles wrong

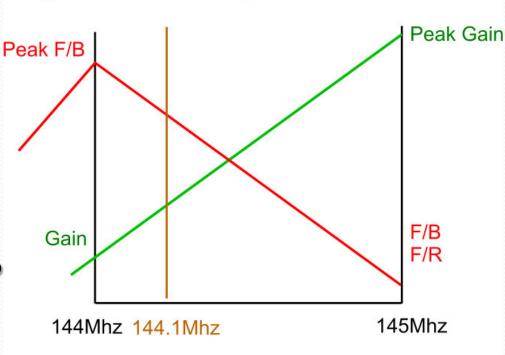
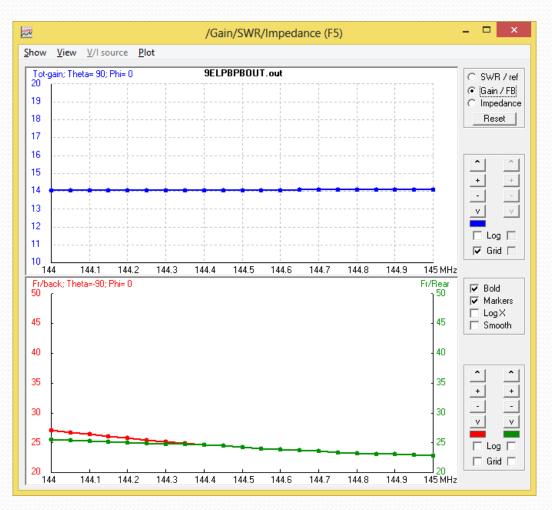
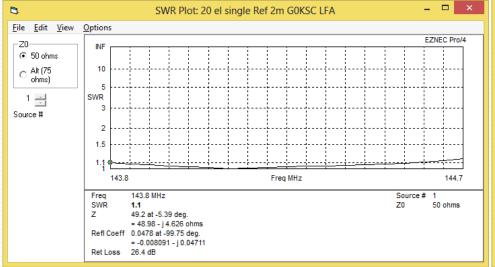
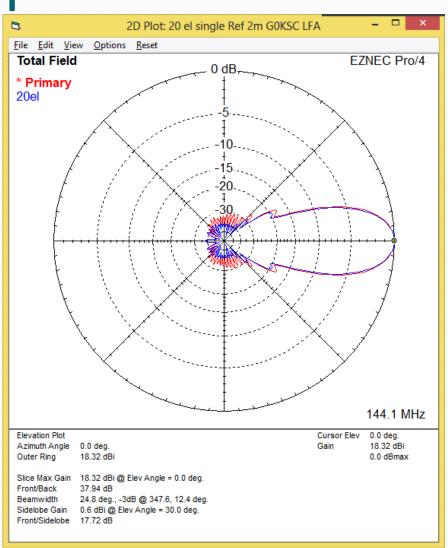



Fig 1

Typical narrow-band Yagi Performance Profile


LFA Design principles - continued

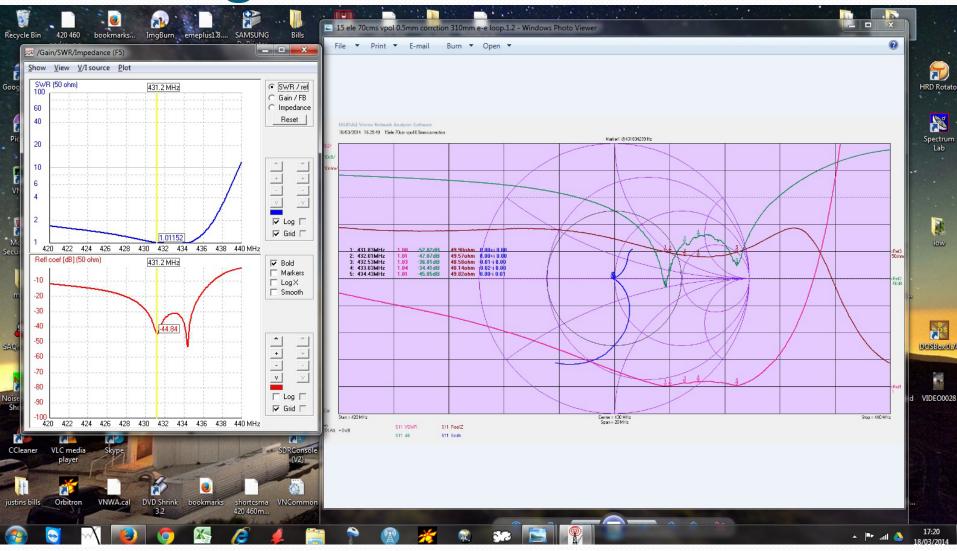

- 9el 144Mhz LFA PBP 14'
- No 'Ski Slope'
 - Flat-line performance
- No shift in weather
 - It moves but is unseen
- Continuous, reliable
 - Predictable performance

LFA design principles - continued

- 20 el 144Mhz LFA Yagi
- 'Free build' GOKSC.co.uk
- Class-leading low temperature
 - 4 antennas = 207 Kelvin
- Excellent G/T results

LFA design principles – continued

- Lower impedance means more bandwidth, not less!
- DUBUS article discussed OWA v 'lower' impedance Yagi design
- Design provides LI results
 - Without matching device
- Yagis need matching?
 - Driven element control
 - K6STI, DG7YBN, etc.
- Optimisation loop
 - 2 dimensional optimisation
 - Close-spaced 'driver cell'



LFA design principles - Continued

- 'Compressed patterns'
 - Non-conventional optimisation
 - Slight reduction in gain
 - Increased rear suppression
 - -.1dB Gain, + 1-1.5dB suppression
- Noise floor reduction
- 'Quieter' frontend to the RX
- No side-lobes either side of dish
 - AZ/EL reductions
 - Toward ground or left/right
 - Increased SNR
 - Hear and be heard! No QRM!

LFA Yagi — Design to real world transition?

Installation and results

Hundreds of independent results online

LFA-TH6 Antenna Comparison.mp4

Thank you for Listening!

