The Computer Model Design, Construction and Field Results – of the WRTC 2014 TriBand Antenna

Scott McClements - *WU2X* Stan Stockton – *K5GO*

May 17, 2013

Overview

- World Radiosport Team Championship (WRTC) 2014
- WRTC Antenna Requirements
- Design Planning
- Electrical Optimization
- Physical Optimization
- Building and Testing the first prototypes
- Interesting Use Examples

World Radiosport Team Championship (WRTC) 2014

- An international contest held every 4 years within the IARU HF Championship
 - "As equal-as-possible" locations, antennas
 - With all else equal, who are the best operators?
- Two-operator teams
 - Team Leaders selected on the basis of performance in contests in "Qualifying Period"
 - Team Leader selects Team Member
- To be held in New England in July 2014

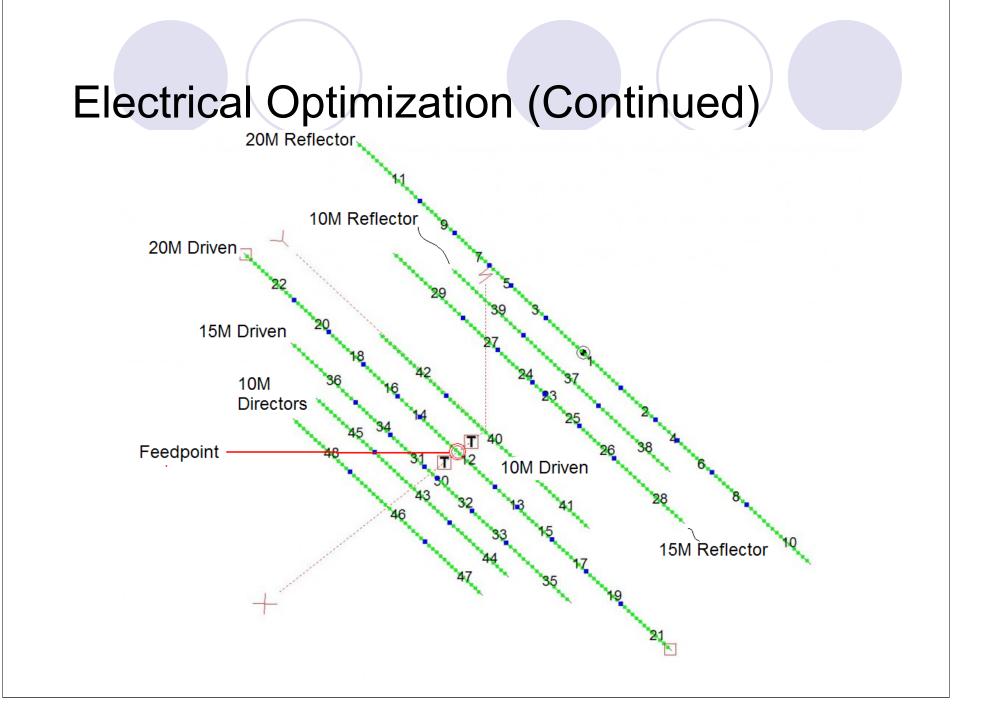
WRTC Antenna Requirements

WRTC Antenna Requirements (Cont.)

- 65 identical directive antennas that can operate on 10/15/20 Meters
- Ease of assembly / disassembly / reassembly
- Assembled Antenna Weight: 25 30 pounds or less as the target (excluding feedline)
- Boom length: 12 -18 feet
- VSWR: Less than 2:1 across the 20, 15, and 10-meter bands (28.0 -28.5 segment of 10M is sufficient)
- Feed System: Single 50-ohm coax cable
- Material: Stainless-steel hardware, aluminum tubing
- 80 MPH windload handling capability
- Simultaneous operation on all three bands
- Price to performance value

Design Planning

- Stan Stockton (K5GO), Kevin Stockton (N5DX) and Scott McClements (WU2X) start planning November 1, 2011
- "Clean sheet of paper" designed exactly to the WRTC requirements
- Sought to deliver a new and exciting antenna design that would be fitting for this unprecedented international contesting event
- Goals for the antenna design:
 - Lightweight
 - Mechanically robust
 - True monopod performance
 - SWR < 1.6:1 across all the bands
 - Greater performance on 10 meters
 - Most importantly Provide WRTC contestants with the very highest level of performance possible for the size


Design Planning (Continued)

Settled on:

- O 2 elements on 20 meters
- O 2 elements on 15 meters
- 4 elements on 10 meters
- Direct 50 Ohm feed, require no matching networks or tuning
- Time was tight there was only 30 days to design, test and submit a proposal to the WRTC committee
 - Electrical and Mechanical design commenced in parallel
 - K5GO / N5DX = Mechanical design
 - WU2X = Electrical design

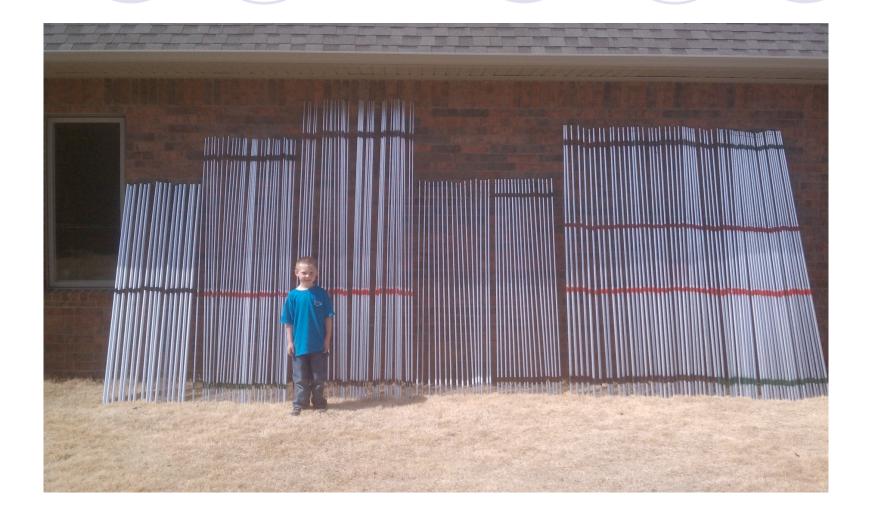
Electrical Optimization

- Numerical Electromagnetics Code (NEC) v4.1 used for antenna simulation
- Custom front end software used to drive NEC automatically
- Software automatically adjusts antenna model and runs NEC 4.1
- Four Intel i7 quad core machines running in a cluster, operating simultaneously
- Brute force search, every combination tried in ¼" increments
- All results above a certain figure of merit were saved to disk
- Took five days to run and two days to hand evaluate some of the higher figure of merit models to select the version to build

Physical Optimization

YagiStress by K7NV

Boom Construction - Light weight boom with minimal sag


Element Construction

- 1. Center sections for 20, 15, and 10 are 1", ³/₄" and ¹/₂" respectively
- 2. Element tips long and .040 wall thickness.
- Single socket head cap screw for each element joint
- WRTC Special provisions
 - 1. Pre-assembly of element plates and element sections up to 6 feet
 - 2. Color coding for ease of final assembly
 - 3. Pop Rivets were not allowed for final assembly of antenna.

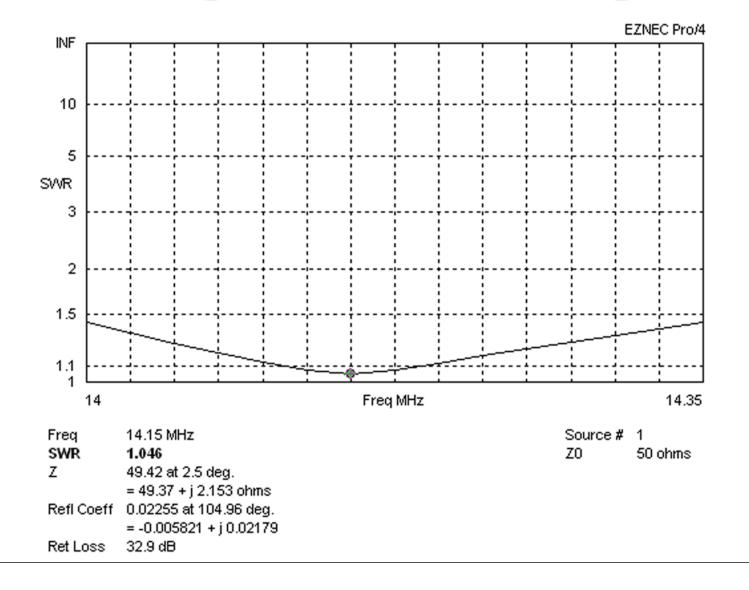
Designer: K5GO		AREA & WE	CYCI	Æ 24 TX38	WRTC TRIBANDER	
No.	ELEMENTS	Location (In)	Proj AREA (SqIn)	WEIGHT (Lb)	Sag (In)	Speed (Mph)
1	20m Reflector	2.500	282.750	4.96	21.889	80
2	10m Reflector	22.180	87.750	1.16	5.075	82
3	15m Reflector	41.872	133.875	2.03	9.194	82
4	10m Driven Element	89.704	84.563	1.13	4.243	87
5	20m Driven Element	113.027	273.844	4.86	17.540	83
6	15m Driven Element	136.360	129.938	1.98	7.792	85
7	10m Director 1	152.840	78.375	1.06	2.943	94
8	10m Director 2	174.500	77.250	1.05	2.746	96
			1148.344	18.23		
	Units	A *	•ea	Prin	t ESC	

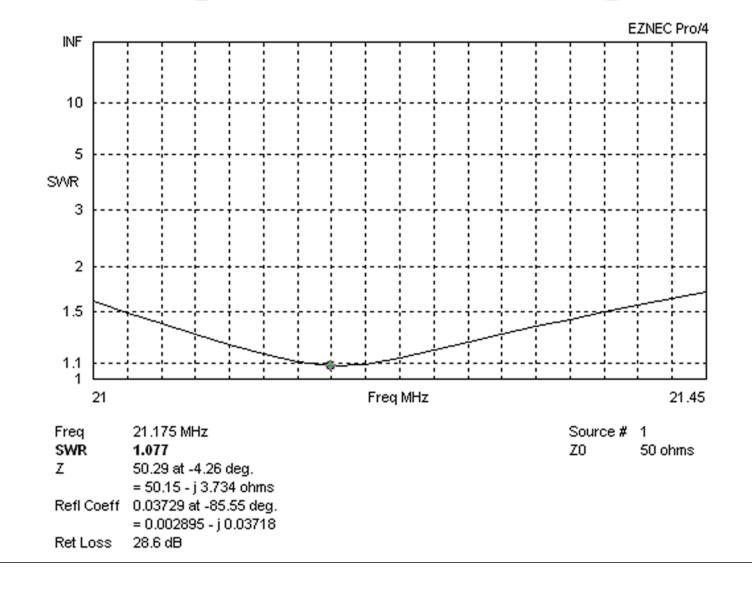
YS.EXE					_ 🗆
Designer: K5G	0 Eleme	nt No. 1	> 20m Ref	lector	File: TX-38
Location (In) 2.500	Eff Area (188.	(SqIn) 4 500	leight (Lb) 4.96	Sag (In) 21.889	Safe @ 80 Mph
Section No	Diameter —In—	Wall —In—	Exposed -	Length —In— Total	$\begin{array}{r} \text{Stress} \\ \text{Max} = 35.00 \\ \text{Ksi} \end{array}$
Tip> 1	0.375	0.040	63.000	66.000	27.73
2	0.500	0.058	33.000	36.000	26.73
3	0.625	0.058	33.000	36.000	30.72
4	0.750	0.058	21.000	24.000	28.84
5	0.875	0.058	33.000	36.000	33.05
6	1.000	0.058	27.000	27.000	34.70
7 Dblr	1.000	0.116	9.000	9.000	23.02
Half Length = Res Frequency =	219.000 I	n Ihz			
iew Edit Add/	Rem Move	Wind/F1	Next El Na	ume Units Tu	bing P rint ESC

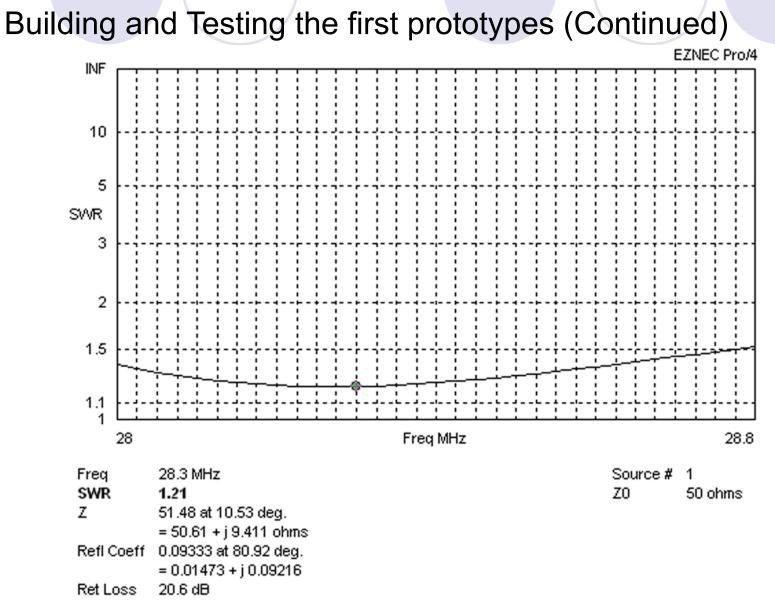
8450 holes to drill – WHAT?!

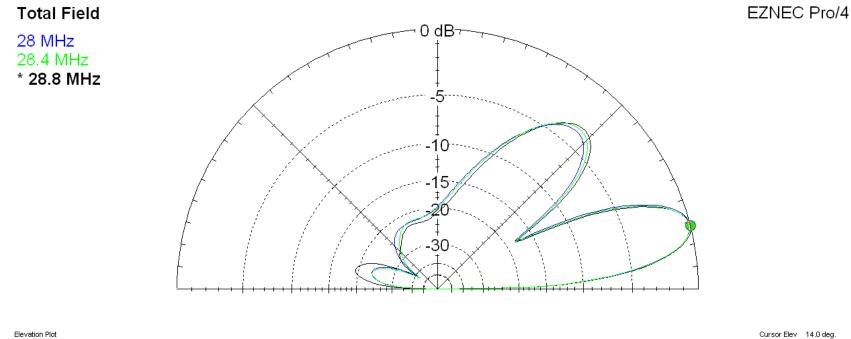
Calls for a six foot wing span and SO2DP

K1DG 8450 M K5GO 67 AR

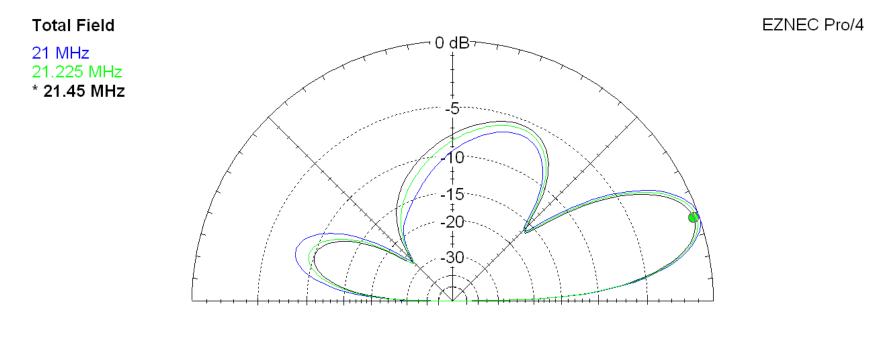

Building and Testing the first prototypes


- In the second week of November 2011, two physical prototypes were built and tested independently
- Discovered a NEC anomaly related to transmission lines
- SWR curve and resonance frequency on 15M and 10M are a dead match with NEC 4.1
- Higher resonance frequency on 20M required lengthening the reflector and driven element 1.5" per side, to bring both resonance and F/R curve into the band
- Both models demonstrated the same SWR curves and performance
- PowerSDR/IF Stage used to plot azimuth pattern (0.1dB resolution)




Building and Testing the first prototypes

Gain 13.17 dBi 0.0 dBmax


Elevation Plot Azimuth Angle 0.0 deg. Outer Ring 13.17 dBi

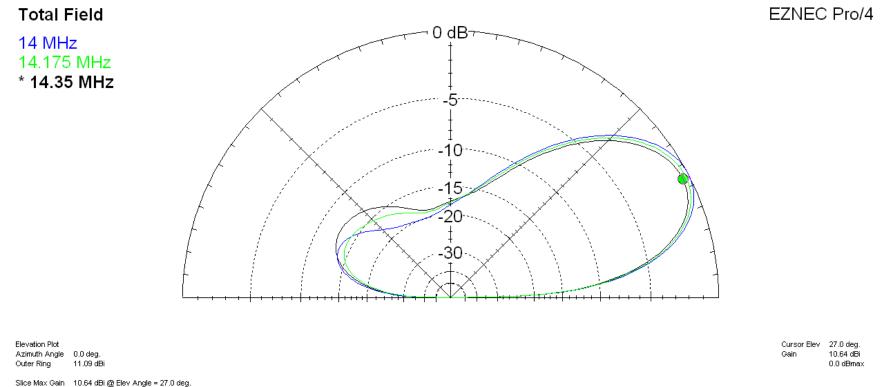
 Slice Max Gain
 13.17 dBi @ Elev Angle = 14.0 deg.

 Beamwidth
 15.2 deg.; -3dB @ 6.9, 22.1 deg.

 Sidelobe Gain
 9.98 dBi @ Elev Angle = 47.0 deg.

 Front/Sidelobe
 3.19 dB

Elevation Plot Azimuth Angle 0.0 deg. Outer Ring 11.94 dBi


 Slice Max Gain
 11.56 dBi @ Elev Angle = 19.0 deg.

 Beamwidth
 20.8 deg.; -3dB @ 9.1, 29.9 deg.

 Sidelobe Gain
 6.46 dBi @ Elev Angle = 68.0 deg.

 Front/Sidelobe
 5.1 dB

Cursor Elev 19.0 deg. Gain 11.56 dBi 0.0 dBmax

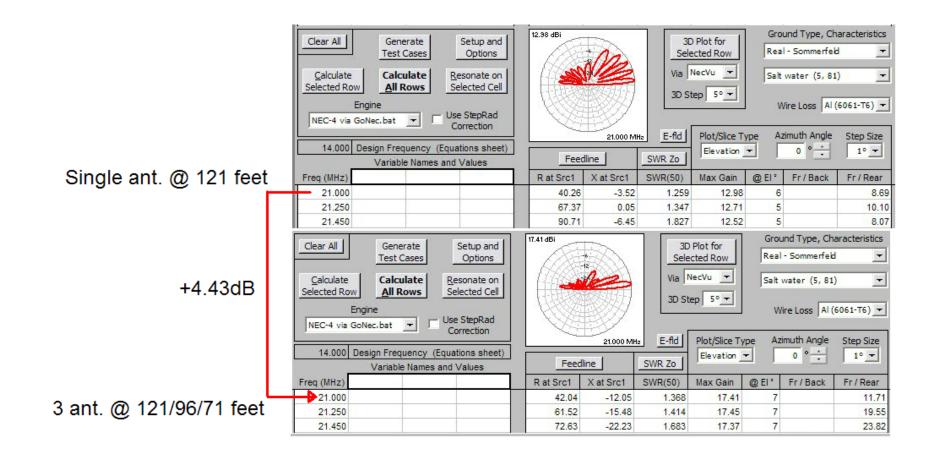
 Slice Max Gain
 10.64 dBi @ Elev Angle = 27.0 deg.

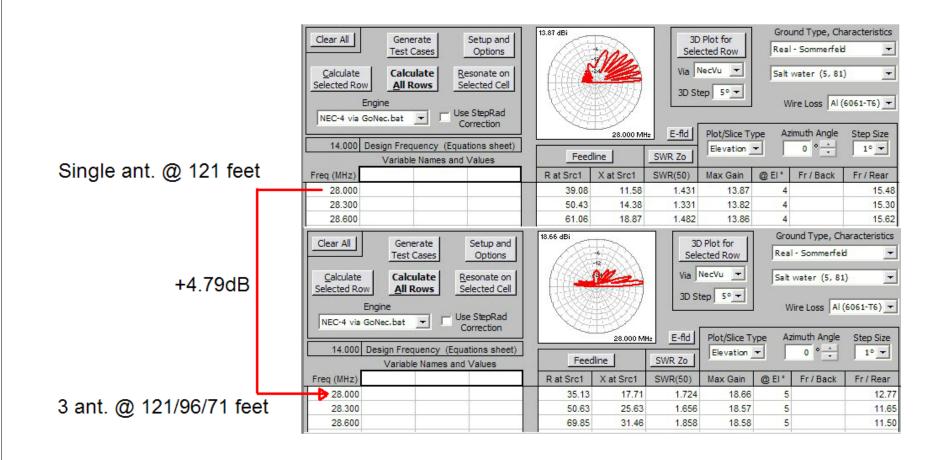
 Beamwidth
 33.0 deg; -3dB @ 12.9, 45.9 deg.

 Sidelobe Gain
 -1.47 dBi @ Elev Angle = 148.0 deg.

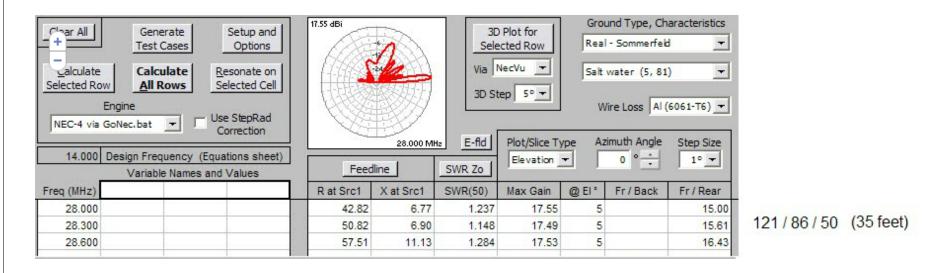
 Front/Sidelobe
 12.11 dB

Interesting Use Example # 1 Triplexing


- Using a triplexer device allows 3 different transceivers to operate a single antenna on the 3 different bands simultaneously
- Field Day operations can have three stations operating into one antenna at once
- WRTC 2 person teams will be able to operate simultaneously on different bands during the contest



Interesting Use Example # 2 Stacking


- Reasons to stack antennas
 - More gain
 - Better angle coverage
- WRTC antenna is light on a tower weight and windload wise
- 47" opening at mounting point wide enough for even side arms
- Optimum stacking distance is 25'
 - Wider is not recommended as 10 Meters will suffer with a major secondary high angle lobe
- Cost effective compared to stacking monobanders on a single tower

Stack spacings wider than 25' hurt 15M and 10M performance

