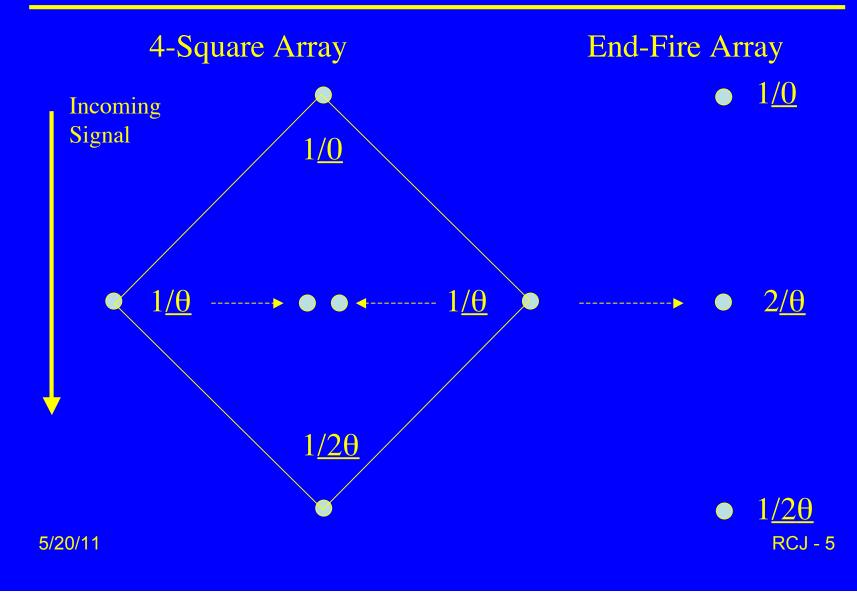
Multi-Element End-Fire Arrays of K9AY Loops Richard C. Jaeger, K4IQJ Auburn, AL Dayton, May 20, 2011

K4IQJ@mindspring.com

#### INTRODUCTION

- Introduction & Overview
- K9AY Array Simulation Results
- Array Implementation
- Results
- Discussion / Observations

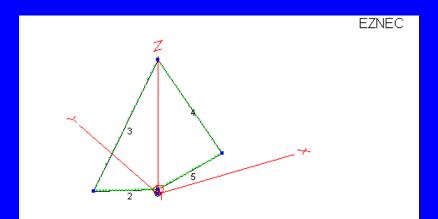

#### BACKGROUND

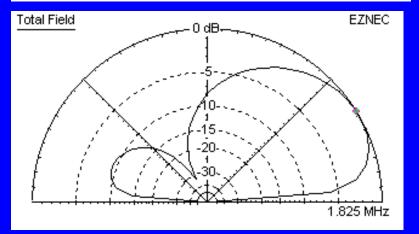
- Started with K9AY loop pair
- Added 4-square of short verticals (100' side)
- Very poor ground conditions
  - Very rocky with rock shelves and clay
  - 2-3 mS/M ground conductivity
  - 4-Square not level
- K9AY loop generally better than 4-square

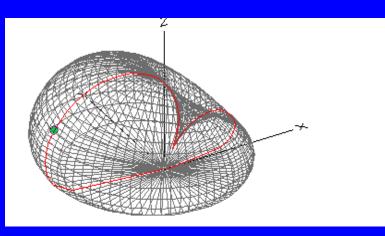
#### BACKGROUND

- Wanted to try a 4-square of loops
  - Could not site the 4-square array well on my lot
  - Uneven lot + esthetic considerations
- Reviewed some existing literature
  - K9AY paper on loop arrays [1]
  - ON4UN book [2]
- Realized that the side elements of the 4square essentially operate in parallel
- Decided to try a 1-2-1 binomial array
- Design goal maximize RDF

#### BACKGROUND 4-SQUARE / END-FIRE "TRANSFORMATION"

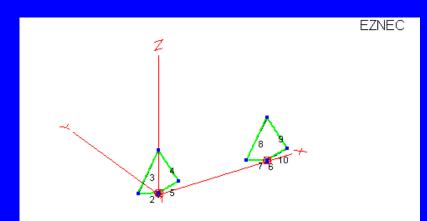


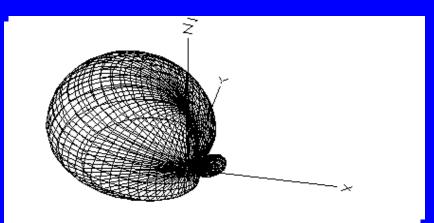


# RDF Receiving Directivty Factor

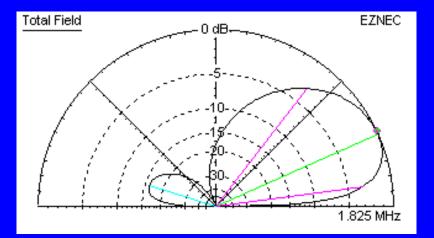

- Noise generally comes in from all directions
- RDF compares main lobe gain to average gain over whole antenna

•  $RDF_{dB} = G_{for}(dB) - G_{avg}(dB)$ 

### ARRAY COMPARISON K9AY Loop

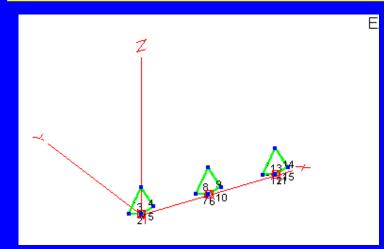


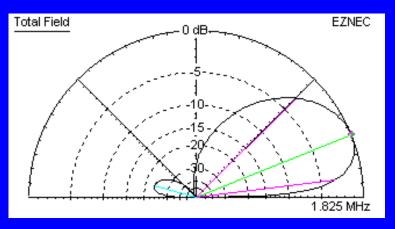



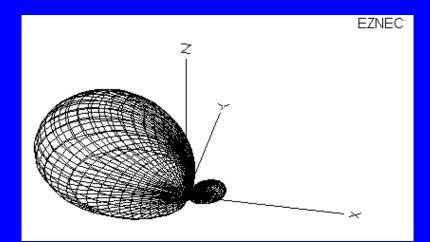




Forward Gain: -23.6 dBi Average Gain: -31.0 RDF: 7.4 dB Beamwidth: 173° F/B: 9.5 dB

#### ARRAY COMPARISON Two-Element Endfire Array - 80' Spacing



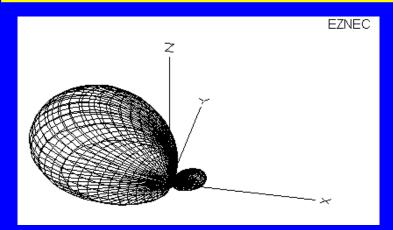



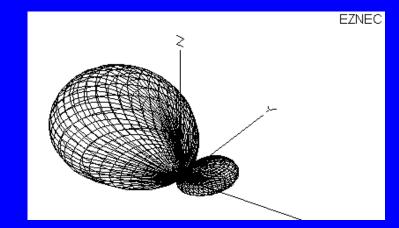

Gain: -25.6 dBi RDF: 10.5 dB Beamwidth: 96° F/B: 16.0 dB

#### ARRAY COMPARISON Three-Element Endfire Array - 80' Spacing







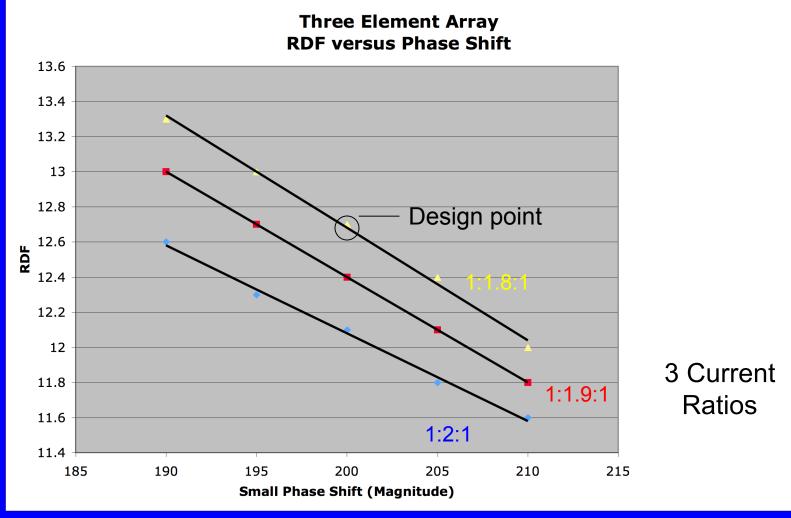


Gain: -29.2 dBi RDF: 12.1 dB Beamwidth: 75° F/B: 24.0 dB

5/20/11

**RCJ - 9** 

#### ARRAY COMPARISON Three-element Array - 160M & 80M





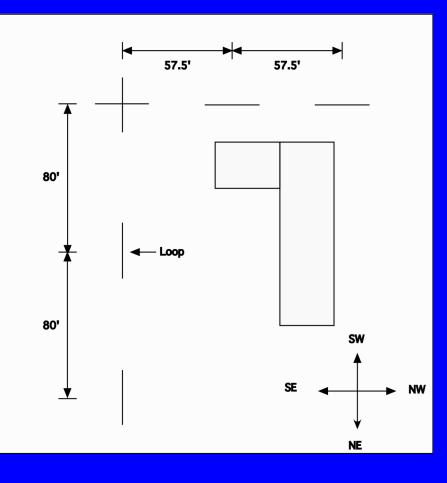

1.825 MHz

3.505 MHz

| Table I - Comparison of End-Fire Arrays with a Single Loop - 80' spacing |          |         |                              |  |
|--------------------------------------------------------------------------|----------|---------|------------------------------|--|
|                                                                          | 160M RDF | 80M RDF | 160M / 80M Crossfire Phasing |  |
| Single Loop                                                              | 7.4 dB   | 7.4 dB  |                              |  |
| 2-Element Array                                                          | 10.5 dB  | 10.0 dB | -205° / -230°                |  |
| 3-Element Array                                                          | 12.1 dB  | 11.3 dB | 0,-200°,-400°/0,-220°,-440°  |  |
| 4-Element Array                                                          | 14.3 dB  |         | 0, -195°, -390°, -585°       |  |

#### 3-ELEMENT ARRAY OPTIMIZATION Alternate Current Ratios



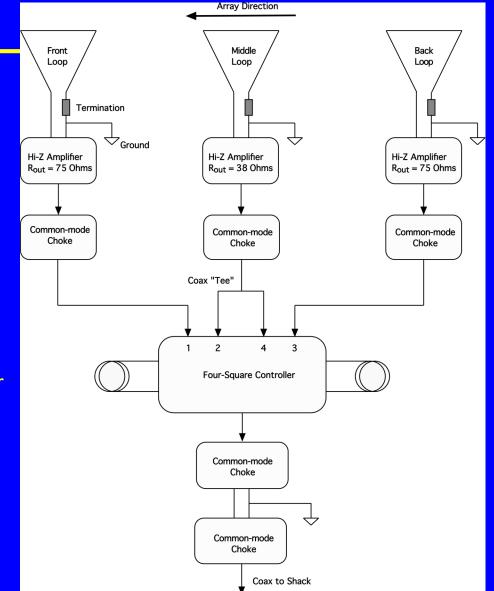

5/20/11

#### 3-ELEMENT ARRAY OPTIMIZATION Alternate Current Ratios

- Enhanced RDF achieved with other current ratios
- Settled upon 1:1.8:1

| 1:1.8:1 Binomial End-fire Arrays <sup>*</sup> - 1.825 MHz - RDF versus Crossfire Phasing |              |          |          |          |          |
|------------------------------------------------------------------------------------------|--------------|----------|----------|----------|----------|
|                                                                                          |              |          |          |          |          |
| Phasing                                                                                  | -190/-20     | -195/-30 | -200/-40 | -205/-50 | -210/-60 |
| RDF                                                                                      | 13.3 dB      | 13.0 dB  | 12.7 dB  | 12.4 dB  | 12.0 dB  |
| Angle                                                                                    | $20^{\circ}$ | 20°      | 21°      | 21°      | 22°      |
| Beam Width                                                                               | 62°          | 66°      | 69°      | 73°      | 76°      |
| Back Lobes                                                                               | -16 dB       | -18 dB   | -20 dB   | -21 dB   | -23 dB   |
| Gain                                                                                     | -33.0 dB     | -31.5 dB | -30.1    | -28.9    | -27.8    |
|                                                                                          |              |          |          |          |          |
| <sup>*</sup> Arrays with both 80 ft and 57.5 ft spacing are essentially the same         |              |          |          |          |          |

#### ARRAY IMPLEMENTATION Placement of the Arrays




- Layout of NE/SW (160') & NW/SE (115') Arrays
- Heavily wooded lot
- Front yard is left of house
- Small lake off to the right
- Downhill slope to right

# **ARRAY IMPLEMENTATION**

#### System Design

- Controllers
  - One Hi-Z
  - One DX Engineering
- Hi-Z Amplifiers
  - 500 Ω antennas connected directly to amplifier inputs
  - Center amplifier drives a coax pair & two controller inputs
  - Output Resistance R<sub>out</sub>
    - 75  $\Omega$  for ends
    - ≈ 38 Ω for center adjusted for 1.8:1 output
- Must switch loop termination with controller phasing
- Beaded chokes (Wireman)
  - 50 Ω coax



5/20/11

#### ARRAY IMPLEMENTATION Miscellaneous

- Make Loops as identical as possible
- Four 20' radials under each loop (4: relative to loop)
- Beaded chokes throughout
  - Approximately 1000  $\Omega$  on TB
- "Braid breakers" now in NE/SW array
  - No apparent difference
- No observed interaction with grounded aluminum supports
  - Simulation shows small effect
  - Plan to use as short vertical array



#### **Feedline Choke**

### ARRAY IMPLEMENTATION Phasing Lines

- Network or antenna analyzer
- Adjust by measuring the resonant frequency of open-circuited coax lines

| Table III       Phase Shift of Phasing Lines – Calculated from Open Circuit Measurements |                   |                   |                   |                   |  |
|------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|--|
| Phasing Line                                                                             | NE/SW<br>1.825MHz | NE/SW<br>3.505MHz | NW/SE<br>1.825MHz | NW/SE<br>3.505MHz |  |
| 1                                                                                        | 21.5 ft / 17.2°   | 33.0°             | 16.7°             | 32.0°             |  |
| 2                                                                                        | 21.5 ft / 17.2°   | 33.0°             |                   |                   |  |
| 3                                                                                        | 49.0 ft / 39.3°   | 75.5°             | 41.3°             | 79.2°             |  |

#### ARRAY IMPLEMENTATION Loop Antennas & Supports



"Hidden" in Front & Side Yards - Black Wire & String Fiberglass (NE/SW) or Aluminum Poles (NW/SE) 5/20/11

#### ARRAY IMPLEMENTATION Amplifier/Switching Boxes



Single Loop



Corner Loop Pair RCJ - 18

5/20/11

#### ARRAY IMPLEMENTATION Amplifier/Switching Boxes





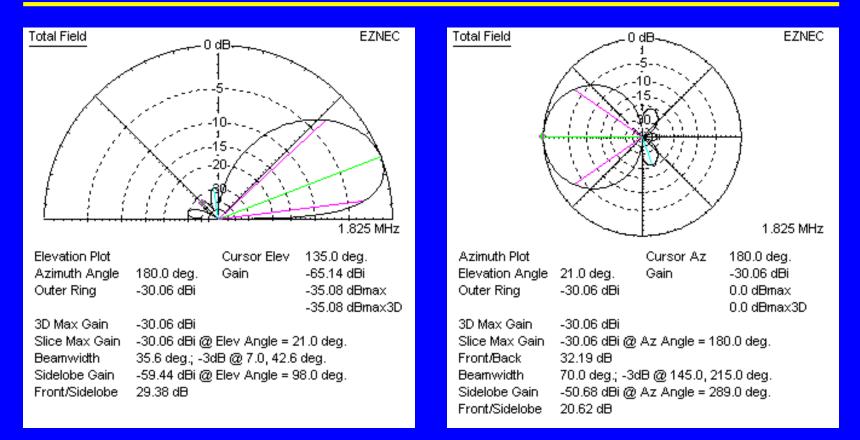
- Weather-Proof Boxes (Lowes)
  - Hi-Z Amplifier
  - Direction Relay
  - Termination Resistor
  - Stainless Steel HW

**RCJ - 19** 

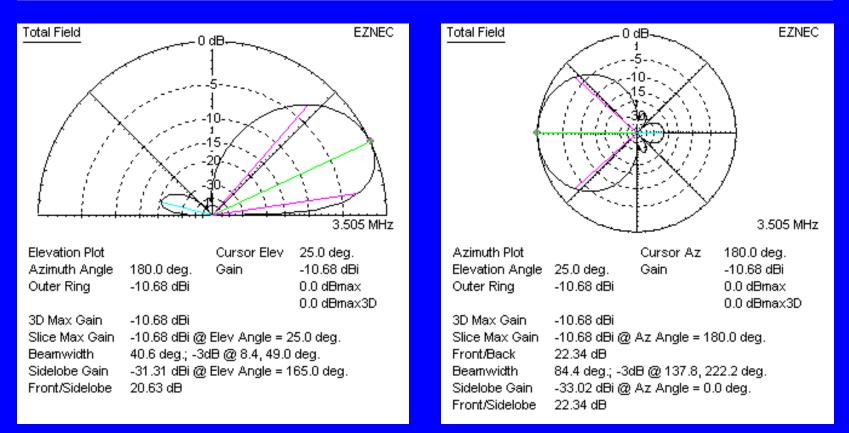
5/20/11

#### RESULTS Experimental Setup

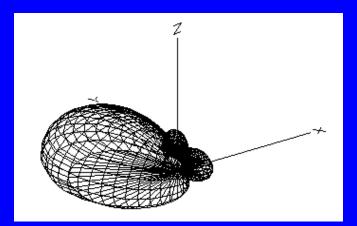
- Array Solutions VNA 2180 (50  $\Omega$ )
- Port A drives 50 Ω coax with 50-Ω termination at input of High-Z amplifiers
- 75  $\Omega$  coax from controller to VNA
- 75 Ω 50 Ω Pad at input to VNA Port B
- Measurements repeatable to within 0.3 dB and less than 0.5°

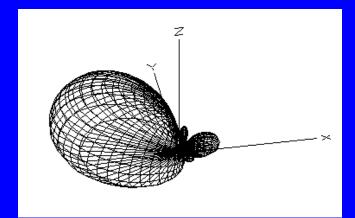



# RESULTS Measurements


| Table IV - Amplifiers + Controller - Normalized Gain and Phase Matching |                   |                  |                 |                  |  |
|-------------------------------------------------------------------------|-------------------|------------------|-----------------|------------------|--|
|                                                                         | 1.827 MHz Results |                  |                 |                  |  |
| Loop                                                                    | NE/SW Gain        | NE/SW Phase      | NW/SE Gain      | NW/SE Phase      |  |
| Front                                                                   | +0.13 dB (1.01)   | 0° (ref)         | +0.05 dB (1.01) | 0° (ref)         |  |
| Middle                                                                  | +5.19 dB (1.82)   | -200.3°          | +5.30 dB (1.84) | -200.1°          |  |
| Back                                                                    | -0.13 dB (0.99)   | -399.8° (-39.8°) | -0.05 dB (0.99) | -401.5° (-41.5°) |  |
| 3.505 MHz Results                                                       |                   |                  |                 |                  |  |
| Loop                                                                    | NE/SW Gain        | NE/SW Phase      | NW/SE Gain      | NW/SE Phase      |  |
| Front                                                                   | +0.14 dB (1.02)   | 0° (ref)         | -0.01 dB (1.00) | 0                |  |
| Middle                                                                  | +5.07 dB (1.79)   | -218.6°          | 5.26 dB (1.83)  | -220.8           |  |
| Back                                                                    | -0.14 dB (0.98)   | -434.0° (-74.0°) | 0.01 dB (1.00)  | -440.8 (-80.8°)  |  |

Note: Same phasing line utilized on 160 & 80 M Gain in good agreement with SPICE models


#### RESULTS Final Simulations - 160 M




### RESULTS Final Simulations - 80 M



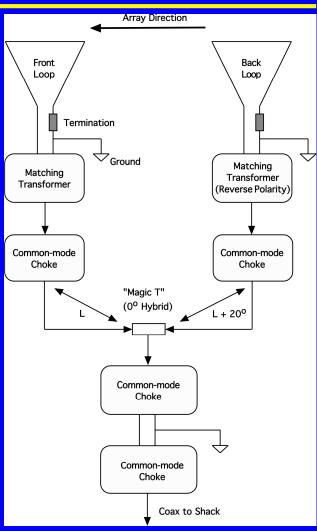
### RESULTS Final Simulation Comparisons





| Table VI - Simulation Results Using Measured Data |                    |           |                    |                 |  |
|---------------------------------------------------|--------------------|-----------|--------------------|-----------------|--|
|                                                   | 160' Array (NE/SW) |           | 115' Array (NW/SE) |                 |  |
| Band                                              | 160 M              | 80 M      | 160 M              | 80 M            |  |
| RDF                                               | 12.6 dB            | 11.5 dB   | 12.4 dB            | 11.5 dB         |  |
| Angle                                             | 21°                | 25°       | 21°                | 24 <sup>°</sup> |  |
| Beam Width                                        | 70°                | 84°       | 71°                | 84°             |  |
| Gain                                              | -30.1 dBi          | -10.7 dBi | -33.8 dBi          | -12.8 dBi       |  |
| F/B                                               | 32.2 dB            | 22.3 dB   | 25.6 dB            | 54.1 dB         |  |
| Front/Side                                        | 29.4 dB            | 20.6 dB   | 18.4 dB            | 27.7 dB         |  |

## RESULTS The Bottom Line


- Copied FR/DJ7RJ & 5R8RJ night after night on 160
  - Not readable on inverted L transmit antenna
- Worked S79GM on both 160 M & 80 M.
  - Also could not copy on inverted L
- PJ4 First TB qso required loop array
- Missed 9Q5ØQN couldn't hear me
  - Consolation Worked on 80 M for new one
- More recent successes
  - TJ9PF, 4L/UUØJM, XU7ACY, 9L5MS, 5M2TT
- Worked VK3ZL > 12 times through June-July-August QRN
- Routinely use on 160 M / 80 M to "save ears"
- Use on any frequency where there is an advantage
  - E.g. 40M, 30M and up there are lobes pointed somewhere
  - Have used on 17M and 12M

## DISCUSSION / OBSERVATIONS Loops and Short Verticals

- Second short vertical array parallels NE/SW array
  - Separated by approximately 20'
- Loops almost always better at my location
  - Vertical array better only one time in last two months
- Simulation indicates small advantage for the loops
  - Array factor should be the same
  - Inherent F/B of loop provides some advantage
- Output of wider spaced array is clearly higher
- Vertical supports on NW/SE array can operate as short (26') vertical array elements
  - Plan to be able to switch back and forth not implemented yet
- My skill level is much higher now than when I did first 4-square installation - phasing not optimal

# DISCUSSION / OBSERVATIONS Two-element Arrays

- Elements were added one at a time
- Significant improvement noted at each step
- Two-element array gives very useful improvement if space is limited
- Amplifiers not required
- With or without 0° hybrid depending upon choice of matching transformer design



**RCJ - 27** 

## DISCUSSION / OBSERVATIONS Other Ideas

- Latest version
  - Doubly terminate loops
  - Switch single amplifier input
- An alternative for three-element array ratios
  - Use identical amplifiers & attenuate the front and rear amplifiers by a factor of 0.54.
  - Only requires one coax from the center amplifier
  - Noise figure is degraded by attenuation factor
  - Degradation was noticeable when I tried it
- Side rejection is very high. One antenna may be useful as "noise" antenna for the other.
- Combine the two array outputs, to fill 45° directions
  RDF drops to 10 dB

#### THANK YOU FOR YOUR ATTENTION

#### • QUESTIONS?

K4IQJ@mindspring.com

5/20/11

RCJ - 29

### REFERENCES

- 1. Gary Breed, K9AY, "Arrays of K9AY Loops: "Medium-sized" low band RX antenna solutions," Sept. 15, 2007. http://www.aytechnologies.com
- 2. John Devoldere, *ON4UN's Low-Band DXing, Fourth & Fifth Editions,* ARRL, Newington, CT: 2005 & 2011.
- 3. http://www.fcc.gov/mb/audio/m3/index.html
- 4. Hi-Z Antennas 4-Square, http://www.hizantennas.com
- 5. DX Engineering 4-Square, http://www.dxengineering.com
- 6. Max-Gain Systems, http://www.mgs4u.com
- 7. The Wireman, <u>http://www.thewireman.com</u>
- 8. Dallas Lankford, http://groups.yahoo.com/group/thedallasfiles
- 9. Richard C. Jaeger, K4IQJ "Multi-Element End-fire Arrays of K9AY Loops," expanded version of 2011 Dayton presentation, May 15, 2011, available from the author.