

What's New in the 21st Edition of *The ARRL Antenna Book*?

By R. Dean Straw, N6BV Senior Assistant Technical Editor, ARRL

Dayton, May 2007

What's New in the 21st Edition of *The ARRL Antenna Book*?

It's hard to imagine that this is the fifth Edition of *The ARRL Antenna Book* for which I've been Handling Editor! Goodness, how time flies.

Changes in the 21st Edition

- About 20% of the book changed materially.
- The complete printed book is on the CD-ROM bundled with the book, just like the 20th Edition. Plus there are software programs and data on the CD-ROM.

Changes in the 21st Edition

- I received tremendous help from the following contributors:
 - Roy Lewallen, W7EL Chap 8, Multielement Arrays
 - Rudy Severns, N6LF -- Chap 27, Measurements

Changes

Here are some examples of the kind of changes you'll find in the paper book.

As usual, you'll find lots of comparisons of antennas thanks to the latest computer modeling software.

Here are some highlights from Chapter 6, **Low-Frequency Antennas**.

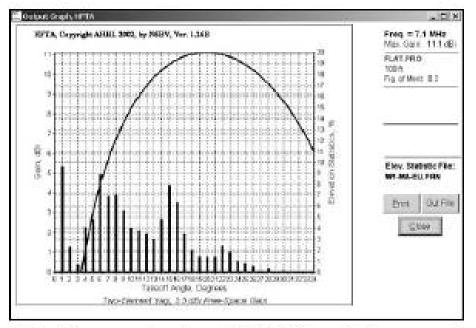


Fig 1—Screen capture from *HFTA* (HF Terrain Assessment) program showing elevation response for 100-foot high dipole over flat ground on 7.1 MHz, with bar-graph overlay of the statistical elevation angles needed over the whole 11-year solar cycle from New England (Boston) to all of Europe. Even a 100-foot high antenna cannot cover all the necessary angles.

The importance of low angles for low-band DXing.

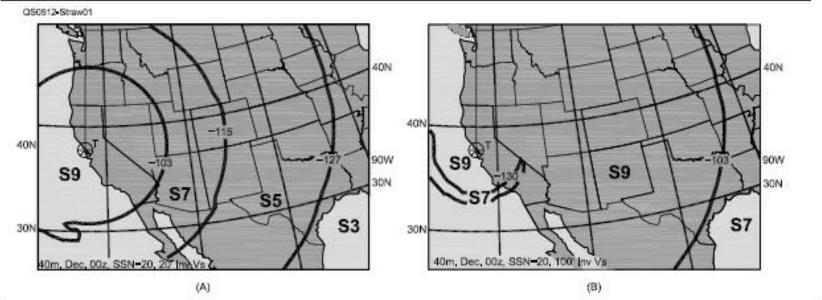
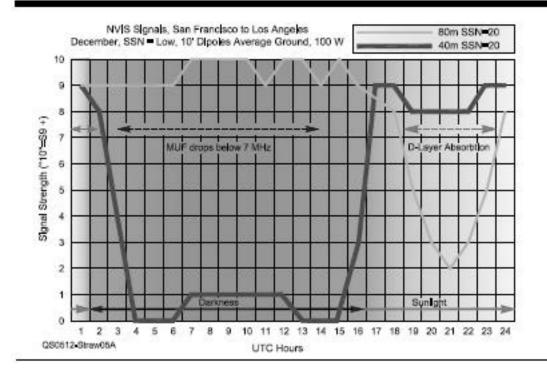
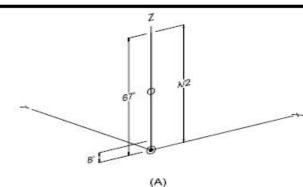
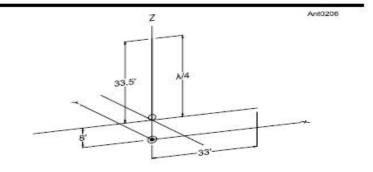
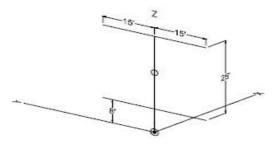


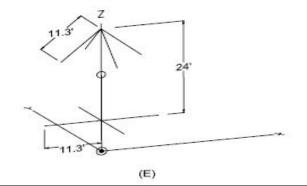
Fig 7—At A, Predicted 40 meter geographic coverage plot for a 100 W transmitter in December at 0000 UTC (near sunset), for a SSN (Smoothed Sunspot Number) of 20. The antennas used are 20 foot-high inverted V dipoles. At B, 40 meter coverage for same date and time, but for 100 foot-high flattop dipoles. Most of California is well covered with S9 signals in both cases, but there is more susceptibility in the higher dipole case to thunderstorm crashes coming from outside California, for example from Arizona or even Texas. Such noise can interfere with communications inside California.

More coverage of NVIS techniques.


Fig 11-VOACAP calculations for a 350 mile path from San Francisco to Los Angeles, using 10 foot-high flattop dipoles. This plot shows the signal strength in S Units ("S10" = S9+10) for a worst-case month/SSN combination-winter solstice, in December, for a low level of solar activity (SSN = 20). The 40-meter signal drops to a very low level during the night because the MUF drops well below 7.2 MHz. The 80-meter signal drops in the afternoon because of D-layer absorption. For 24-hour communications on this path, the rule of thumb is to select 40 meters during the day and 80 meters during the night.

More coverage of NVIS techniques.



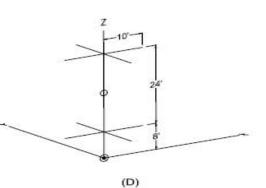
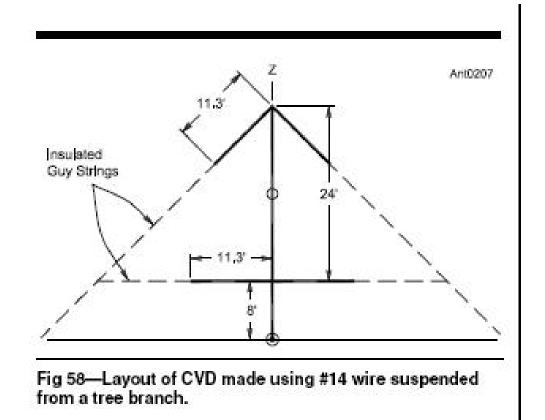
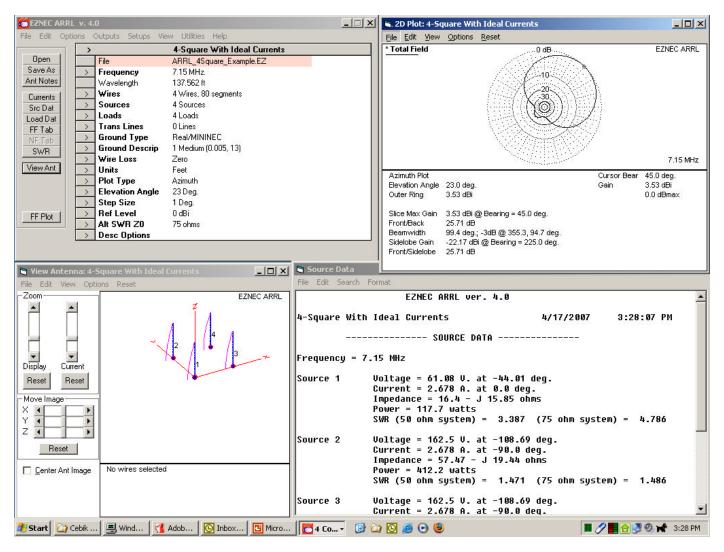



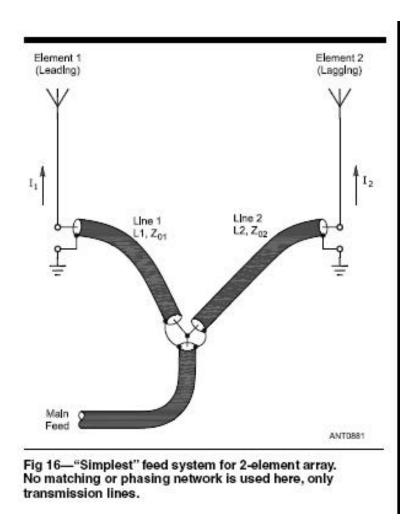
Fig 57—Progression of end-loaded-vertical dipole designs. At A, the HVD (half-wave vertical dipole), with no end loading. At B, an HVD whose bottom half has been replaced with a set of four ground-plane radials, making it into the familiar ground-plane vertical. At C, G6XNstyle dipole with end loading of two wires at both top and bottom. At D, end-loaded dipole with four shorter wires at top and bottom. At E, K8CH end-loaded dipole with asymmetric loading wires. The four top wires are slanted down to the ground using extension insulating strings that also hold up the bottom horizontal end-loading wires. See Fig 58.

A 40-meter CVD – Compact Vertical Dipole.

Table 9 Variations on a Vertical Center-Fed Dipole


Name	Style Fig 57	Vertical Length	Spoke Length	Min. Ht feet	Max. Gain	2:1 SWR kHz	Hairpin Coil	Center Load
		feet	feet		dBi		μH	μH
20 Mete	ers							18940 (J.)
GP	в	17.53	16.53	8	0.29	400		
CVD 1	С	13	7.57	8	0.12	625		-
CVD 2	D	12	5.1	8	0.00	550	0.68	0.68
CVD 3	E	12.15	5.6	8	-0.01	450	0.5	0.5
30 Mete	ers							
GP	В	24.54	23.14	8	0.04	400		
CVD 1	E	24	5.33	8	-0.2	500		<u> </u>
CVD 2	E	17	7.60	8	-0.36	400	0.82	0.82
40 Mete	ers							
HVD	Α	66		8	0.13	450		_
GP 1	в	35	33	8	-0.12	325		$\sim -$
GP 2	в	34.5	33	2	-0.37	400		
CVD 1	С	25	15	8	-0.42	450		_
CVD 2	С	24	15	2	-1.09	400		<u> </u>
CVD 3	D	24	10	8	-0.55	425		0.25
CVD 4	D	24	5	8	-0.85	225		8.7
CVD 5	D	16	8	8	-1.18	175	0.94	6.8
CVD 6	E	24	11.3	8	-0.59	250		_
80 Mete								
HVD	Α	135		8	0.19	225		· — ·
GP	в	65.5	61	8	0.11	200		
CVD 1	С	48.3	30	8	-0.27	200	200	-
CVD 2	E	46.5	21.9	8	-0.50	150		\rightarrow

The CVD – Compact Vertical Dipole.



Some examples from Chapter 8, **Multielement Arrays** with special *EZNEC-ARRL* and *ArrayFeed1* software by Roy Lewallen, W7EL

EZNEC-ARRL updated by Roy Lewallen, W7EL

"Simplest" feed system, 2-element phased array.

/7EL Arrayfeed1	lands		_
Array Type • Two Element	Inputs Enter Frequency MHz 7.15	Help	
C Four Square C 4 Element Rectangle Feed System Type	Enter feedpoint impedances Element R ohms X ohms Leading Element 37.53 -19.1 Lagging Element 69.97 18.5	Clear Entries	
 "Simplest" L Network 	Choose line impedances	Physical Lengths	
Leading element Lagging element	Line 1 Z0 75 ohms Line 2 Z0 75 ohms	Units C Meters C Millimeters C Feet C Inches	.66
Line 1 Line 2	Choose lagging:leading I mag, phase	C Wavelengths	22.698
	Mag 1 Phase -90 deg	1/2 wavelength	45.396
Main feed	Solutions	3/4 wavelength	68.093
	Electrical Length, Degrees 1st Soln 2nd Soln	1st Solution	2nd Solution
	Line 1 70.49 129.93	Line 1 17.777	32.768
	Line 2 156.81 184.31	Line 2 39.546	46.483
ind Solutions 🔽 Calc Zin	Zin 34.67 + j 13.51 50.64 - j 1.52		

Arrayfeed1 and "simplest" feed system

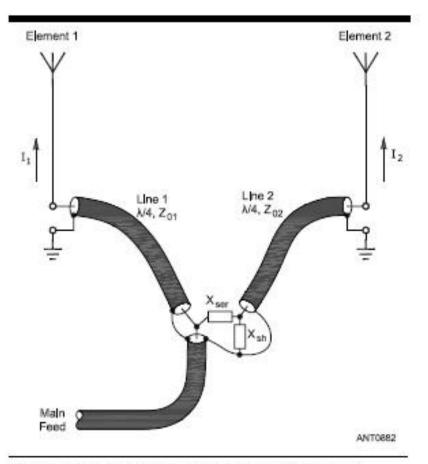
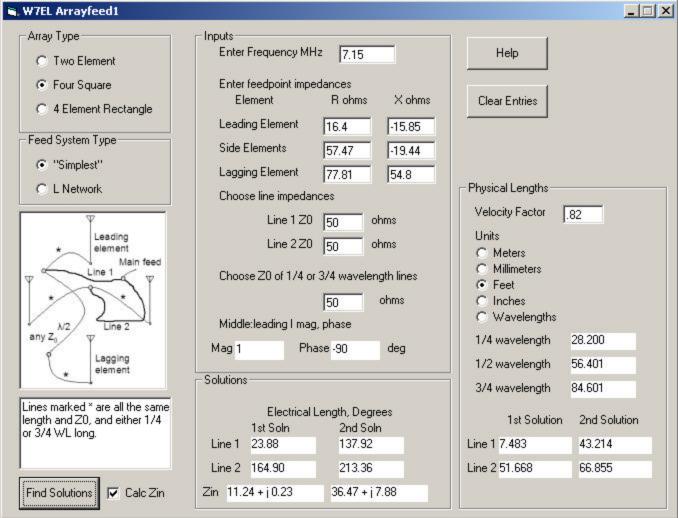
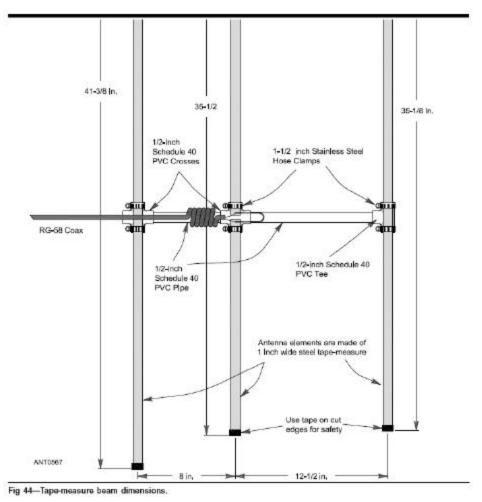



Fig 17— The addition of a simple L-network to Fig 16 allows you to easily adjust feeding of element pairs at other relative phase angles and/or magnitude ratios.

L-Network feed system for 2-element phased array


Arrayfeed1 and "simplest" feed system for Four Square

Chapter 14, **Direction-Finding Antennas**

Chap 14, Direction-Finding Antennas

A Tape-Measure Beam for RDFing

Chapter 16, **Mobile and Maritime Antennas**

Chap 16, Mobile Antennas

Fig 23—The completed Screwdriver antenna mounted on KO4TV's truck rear bumper. (*Photo courtesy of Gary Pearce, KN4AQ.*)

The "Screwdriver" mobile antenna

Chapter 23, **Radio Wave Propagation**

Chap 23, Radio Wave Propagation

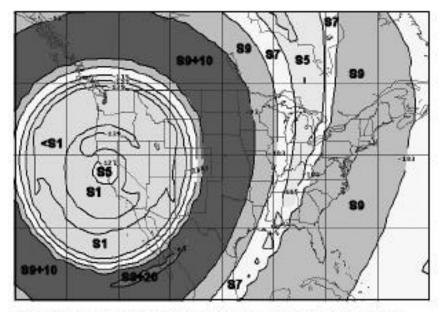


Fig 26—Modified VOAAREA plot for 21.2 MHz from San Francisco to the rest of the US, annotated with signal levels in S units, as well as signal contours in dBW (dB below a watt). Antennas are assumed to be 3-element Yagis at 55 feet above flat ground; the transmitter power is 1500 W; the month is November with SSN = 50, a moderate level of solar activity, at 22 UTC. The most obvious feature is the large "skip zone" centered on the transmitter in San Francisco, extending almost a ¹/₃ of the distance across the US.

Details on the concept of a "Skip Zone"

Chapter 27, Antennas & Transmission Line Measurements

New coverage on Vector Network Analyzers (VNAs) by Rudy Severns, N6LF

Software Included with the 21st Edition of *The ARRL Antenna Book Windows Software:*

TLW – Transmission Line for Windows

YW – Yagis for Windows

HFTA – HF Terrain Assessment

MicroDEM (by Peter Guth, US Naval Academy)

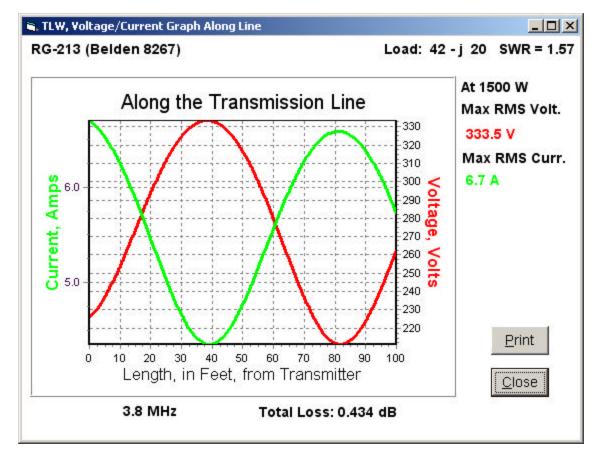
Geo Alert Wizard—ARRL (by Jim Tabor, KU5S)

Range-Bearing

ArrayFeed1 (by Roy Lewallen, W7EL)

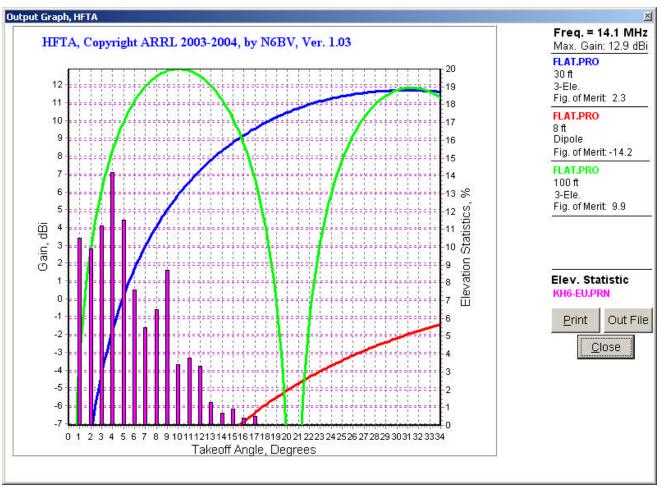
EZNEC-ARRL v. 4 (by Roy Lewallen, W7EL)

TLW						>
TLW, Tr	ansmissi	ion Line P	rogram fo	r Wind	ows	 <u>H</u> elp
		nt 2000-2006, AR -50A Andrew Heli		1ar 14, 2006 💌	6	TÊW
Feet Leng Meters Use		Feet 670 vavelength (for exam	.100 Lambda ple, 0.25w)	Frequenc	y; <mark> 5800</mark>	.0 MHz
Characteristic Z Velocity Factor:		j 0.01 Ohms M: Voltage 1400 V				
Normal Autek	Load C Input	Resistance: [Reactance: [50 Ohms	© Volt./C		<u>G</u> raph
C Noise Bridge		iteactance.	U	Tuner	Print	E <u>x</u> it
SWR at Line In Additional Loss Impedance at In	Due to SWR:		Total Line L		<mark>55</mark> dB	

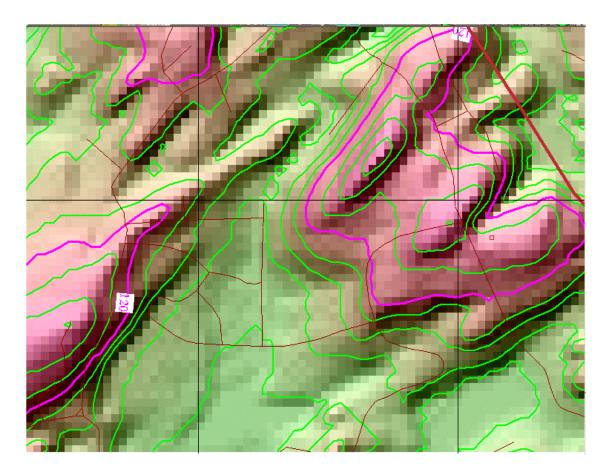

Now covers up to 6 GHz

High-Pass L-Network					
RG-213 (Belden 826	(7)	Length: 100	feet	Frequency:	3.8 MHz
At load: 42 - j 20 oh	ms = 46.5 ohms,	at -25.5 degree	es - Load SV	VR = 1.57	
Eff. Q = 0.7 1.5:1 S	SWR BW = Large,	2:1 SWR BW	= Large		
Estimated power lost	t in tuner for 1500 ^v	W input: 6 W	(0.02 dB = 0.	4% lost)	
Transmission-line los	s = 0.43 dB. Tota	al loss = 0.45 dł	B. Power inte	o load = 1351	.8 W
At 1500 W:	L1	C2			
Unloaded Q	200	1000			
Reactance	71.029	-18.409			
Peak Voltage	387 V	174 🗸			
RMS Current	3.9 A	6.7 A			
Est. Pwr Diss.	5 W	1 W			
RMS Vin: 273.86 V	at -26.35 deg.	RMS Vout: 2	26.21 V at 0.	.00 deg.	
	2275.1 pF	3			
	€ C2				Print
		T			
50.0 Ohma				~~ ~.	Main
50.0 Ohms		CStray	33.51 - j 4.	98 Ohms	Screen
	•+	+ •			<u> C</u> ancel
	2.97 uH	10 pF	S		

Tuner calculations in *TLW*


Voltage/Current along the line in *TLW*

<mark>Щ</mark> нг	TA (HF Terrain Ass	essment)				<u>X</u>
	HFT	A, HF Te	errain A	ssessn	nent "	Help
	Version 1.04, C	opyright 2003-	2004, ARRL, I	oy N6B∨, N	/lar. 02, 2004	
	Frequen	cy:			Diffraction:	ON
	14.1	MHz			<u>O</u> ptions	
	Terrain Files:	Ant. Type	Heights		1	
1:	FLAT.PRO	3-Ele.	30	feet	🔽 Terrain 1	
2:	FLAT.PRO	Dipole	8	feet	Terrain 2	Show Ants.
3:	FLAT.PRO	3-Ele.	100	feet	Terrain 3	
4:				feet	Terrain4	<u>P</u> lot Terrain
Eleva	Elevation ation file: KH6-EU		- Max. El ○ 20 d ○ 25 d ○ 34 d	eg.	<u>C</u> ompute!	<u>E</u> xit


HFTA for Terrain Assessment

HFTA for Terrain Assessment

MicroDEM, showing N6BV/1 in New Hampshire

GeoAlert-ARF	R Wizard			GAW-ARRI	NVIS Toolkit	- USA #1 Light	ning Map					_ 0 2
		1 17 1 1 2					23:52 Tue:	sday, 17 April, 3	2007			
	23:52 Tue	sday, 17 April, 2	2007	HAP Charts	lonospheric	Absorption	Solar Wind	Storm	Aurora	Gightini	na)	
-Solar Wind - Iss	ued: 2310 UT	C, Tue, 17 Apr		USA	Europe	Description						
Bz -3.2 nT	Speed	394.2 km/s	Press 1 nPa	7 30 4	tinga (da	4 * 115	10 105 1	60 95	90 85 ⁺	80 7	rs 70	É n
Current - Issued	: 2106 UTC, 1	Tue, 17 Apr —		0.0 Min	A STAN	and a marked		Ω	1		2 • /	
Flux	69	SSN	7			States.	- ×.	I then	-			
A-Index		10 = Qu	iet	20.0	AN IN	er 🛃 👘	Bismar	ck	1	500	783	
K-Index		2		40.0	• · · · · ·			Minnear	sellist -	Balla	lo Harton	a
Past 24 Hours -	Storms	Next 24	Hours - Storms	an Fran		1		Das Ma	nas Chicago Indian	palis	Newark	
General	Clear	General	Clear	60.0		and the second		Kansas C	Ity A Sector			-80
Geomagnetic	Clear	Geomag	inetic Clear			A La			6	Alex -		
Radiation	Clear	Radiatio	on Clear	80.0	San Diety An	Man Alland	ardae Corkie		Reek	Allanta	7 ×	30
Blackouts	Clear	Blackou	ts Clear					tallas		Tallahasee	×	
Prediction for W	'ed, 18 Apr - I	[ssued: 2203 UT	C, Tue, 17 Apr	100.0		N 30		Houston	Noveoriean	s Tami	1-1	25
Flux	- 270-00 - 20-	70		1.20.0			L. CAR				Mini	5
Ap		5			otal Strikes 28 007-04-17 21:00:2		1	N N		r operational pr		
Probability	1% Chan	ce of Major Stor	m @ Mid-latitudes	2	007-04-17 28:00.2	28.010		G	opyright 2007.	TON		
Probability	1% Chanc	e of Major Storr	n @ High-latitudes	USA #1		7			Reload Late	st		

Geo Alert Wizard—ARRL queries the Internet for geophysical data

RngBrg	Vei	1	e/Bearing 2005, by R. Dean Si			R/B
Position 1	Deg.	Min.	Sec.	Position 2	Deg.	Min. Sec.
N C S	37	38	21.000000	N C S	38	38.350000
Longitude ● W © E	122	24	33.000000	Longitude	122	24.550000
	Decin C D		n. 💿 Sec.		C Deg	
		Clear				Clear
-Range/Be					C R/B from	
	e: 60 s for Range		0 deg	rees	positions	: <u>C</u> ompute
	et C mete	rs 🔘 stat. i	miles 💿 naut. miles	C km	• from R/B	l [
		Clear			1	E <u>x</u> it

Range-Bearing – great for converting DMS to D, or DM, or latitude/longitude positions to Range/Bearings for *HFTA*

DOS Software:

SCALE for scaling Yagis to other frequencies/tapers

AAT -- Analyze Antenna Tuner

LPDA (by Roger Cox, WB0DGF)

MOBILE (by Leon Braskamp, AA6GL)

GAMMA

MOBILE		_ 🗆 ×
Auto 💽 🗈 🛍 🔂 🖀 🗛		
A Location: bumper mnt. B on compact auto 1 Base length: 6 ft. 3 Top length: 3 ft. 2 Diameter: .875 in. 4 Diameter: .188 in. 5 Frequency: 7.2 MHz Radiation efficiency : 30 % Rel. radiated power : -5.2 dB Feed- point impedance : 13 ohms Bandwidth for 2:1 SWR : 59 kHz Item to change, E xtend, S ave, or Q uit >	Turns: 8 Pitch:	14 AWG 3 in. 4.5 in. 35.9 8 t∕in. .95 dia.
To change coil diameter in .25 inch steps: 🔸	maller or 🚹 1	arger

USA W1B Boston, MA W2A Albany, NY W2N Buffalo, NY W3D Washington, DC W3P Pittsburg, PA W4A Montgomery, AL W4F Miami, FL W4G Atlanta, GA W4K Louisville, KY W4N Raleigh, NC W4T Memphis, TN W5A Little Rock, AR W5H Houston, TX W5L New Orleans, LA W5M Jackson, MS W5N Albuquerque, NM W50 Oklahoma City, OK W5T Dallas, TX W6L Los Angeles, CA W6S San Francisco, CA W7A Phoenix, AZ W7I Boise, ID W7M Helena, MT W7N Las Vegas, NV W7O Portland, OR W7U Salt Lake City, UT W7W Seattle, WA W7Y Chevenne, WY W8M Detroit, MI W80 Cincinnati, OH W8W Charleston, WV W9C Chicago, IL W9I Indianapolis, IN W9W Milwaukee, WI WØC Denver, CO WØD Bismarck, ND WØI Kansas City, MO WØK Middle of US, KS WØM St. Louis, MO

Propagation-Prediction Tables

Detailed Propagation Tables

WØN Omaha, NE WØS Pierre, SD Other, North America 6Y Kingston, Jamaica HP Panama City, Panama J3 Grenada KL7 Anchorage, Alaska **KP2** Virgin Islands TI San Jose, Costa Rica V3 Belmopan, Belize VE1 Halifax, Nova Scotia VE2 Montreal, Quebec VE3 Toronto, Ontario VE4 Winnipeg, Manitoba VE5 Regina, Saskatchewan VE6 Calgary, Alberta VE7 Vancouver, BC VE8 Yellowknife, NWT VO1 St. John's, NFL VP2 Anguilla VP5 Turks & Caicos VP9 Bermuda XE1 Mexico City, Mexico ZF Cayman Island

Europe

CT Lisbon, Portugal DL Bonn, Germany EA Madrid, Spain EI Dublin, Ireland ER Kishinev, Moldava F Paris, France G London, England I Rome, Italy JW Svalbard OH Helsinki, Finland OK Prague, Czech Republic ON Brussels, Belgium OZ Copenhagen, Denmark S5 Slovenia

SP Warsaw, Poland SV Athens, Greece TF Revkiavik, Iceland UA3 Moscow, Russia UA6 Rostov, Russia UR Kiev, Ukraine YO Bucharest, Romania YU Belorade, Yugoslavia South America 8P Barbados CE Santiago, Chile CP La Paz, Bolivia FY Cayenne, French Guiana HC Quito, Ecuador HC8 Galapagos Islands HK Bogota, Columbia LU Buenos Aires, Argentina OA Lima, Peru P4 Aruba PY1 Rio de Janeiro, Brazil PY0 Fernando de Noronha YV Caracas, Venezuela YV0 Aves Island ZP Asuncion, Paraguay

Asia

1S Spratly Islands 3W Ho Chi Minh City, Vietnam 4J Baku, Azerbaijan 4S Columbo, Sri Lanka 4X Jerusalem, Israel 9N Katmandu, Nepal AP Karachi, Pakistan BS7 Scarborough Reef BY1 Beijing, China BY4 Shanghai, China BY0 Lhasa, China HS Bangkok, Thailand HZ Riyadh, Saudi Arabia JA1 Tokyo, Japan

JA3 Osaka, Japan JA8 Sapporo, Japan JT Ulan Bator, Mongolia TA Ankara, Turkey UA9 Perm, Russia UA0 Khabarovsk, Russia UN Alma-Ata, Kazakh VR2 Hong Kong VU New Delhi, India VU4 Andaman Islands XZ Rangoon, Myanmar Oceania 3D2 Fiji Islands 3Y Peter I DU Manila, Philippines FO Tahiti H4 Honiara, Solomon Islands KH0 Saipan, Mariana Islands KH6 Honolulu, Hawaii KH7K Kure KH8 American Samoa V7 Kwaialein, Marshall Islands VK2 Sydney, Australia VK4 Brisbane, Australia VK6 Perth, Australia VK8 Darwin, Australia VK9 Cocos-Keeling Island YB Jakarta, Indonesia YJ Vanuatu ZL1 Aukland, New Zealand ZL3 Christchurch, New Zealand

Africa

3B7 St Brandon 3B9 Rodrigues 3C Bata, Equatorial Guinea 5N Lagos, Nigeria 5R Antananarivo, Madagascar 5U Niamey, Niger Republic 5Z Nairobi, Kenya

170 QTHs around the world

Propagation-Prediction Tables

6W Dakar, Senegal 7Q Lolongwe, Malawi 7X Algiers, Algeria 9J Lusaka, Zambia 9L Freetown, Sierra Leone 9X Kigali, Rwanda C5 The Gambia C9 Maputo, Mozambique CN Casablanca, Morroco D2 Luanda, Angola

EA8 Canary Islands FT5X Kerguelen

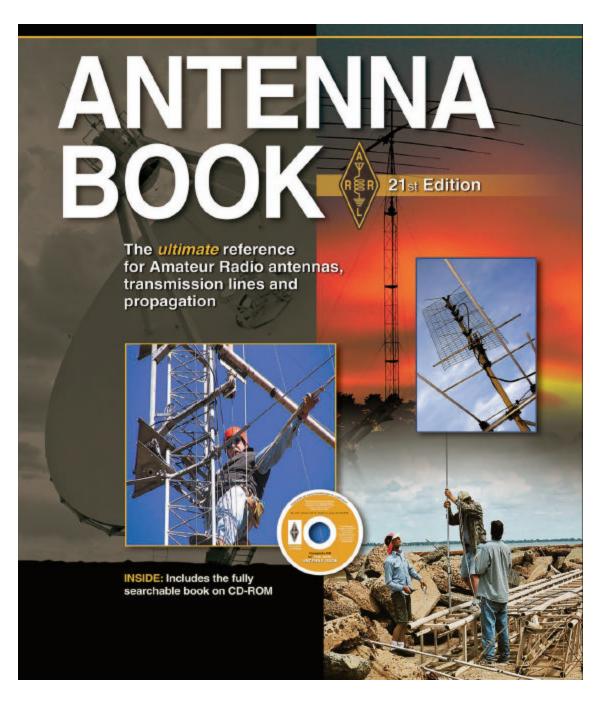
J2 Djibouti ST Khartoum, Sudan SU Cairo, Egypt T5 Mogadisho, Somalia VQ9 Chagos, Diego Garcia XT Burkina Faso ZS1 Capetown, So. Africa ZS6 Johannesburg, So. Africa

170 QTHs around the world

Summary Propagation-Predictions

Nov., Morocco (Casablanca), for SSN = Very High, Sigs in S-Units. By N6BV, ARRL.

1000						(-		~					00	•		- ,	-	-9	,	~		- ~	-			-,	÷ 1		,.							
			80	Me	ter	s				40	Met	ter	s				20	Me	ter	s				15	Me	ters	3				10	Met	er	8		
JTC	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	UT
0	9+	-	9	9+	9	-	9+	9+	8	9+	9+	9+	-	9+	9	9+	9+	9+	9+	9+	9+	-	8	9+	9+	3	9+	-	-	4*	9+	9	-	6	-	0
1	9+	-	9	9+	9	-	9+	9+	7	9+	9+	9+	-	9+	9	9+	9+	9+	9+	9	8	-	7	9+	9+	-	9+	-	-	2*	9+	8		7	-	1
2	9+	2	8	9+	9	_	9+	9+	-	9+	9+	9+	120	9+	9	9	9+	9+	9+	8	9	-	4	9+	9+	-	8	-	-	1*	9+	8	27	-	2	2
3	9+	-	8	9+	9	-	9+	9+	-	9+	9+	9+	5	9+	8	9	9+	9+	9	9	9+	-	-	9+	9+	-	-	-	-	-	8	5	-	-	-	3
4	9+	-	9	9+	6	-	9+	9+	-	9+	9+	9+	7	9+	5	5	9+	9+	8	9	9+	-	-	9	8	-	-	-		-	-	5	-	12	-	4
5	9+	-	9	9+	2	5	9+	9+	-	9+	9+	9	8	9+	6	5	9+	9+	9+	4	9+	Ξ.	-	-	6	1	1	-	-	-	-	5	-	-	-	5
6	9+	-	9+	9+	-	5	9+	9+	-	9+	9+	5	9	9+	9+	8	8	9+	9+	4	6	-	8	1*	8	9+	7	-	-	2	-	7	2	6	-	6
7	9+	-	9	9+	2	\simeq	9+	9+	3	9+	9+	3	8	9+	9+	9	9+	9+	9	7	9	9+	9	4	9+	9+	8	-	(2)	9	23	7	9+	9	2	7
8	9	-	7	9+		-	9	9+	2	9+	9+	1	7	9+	9+	9	9+	9+	9	9+	9+	9+	9+	9+	9+	9+	8	-	9	9	8	9+	9+	9	-	8
9	4	2	3	9+	-	_	6	9	2	9	9+	-	121	9	9+	9	9+	9+	9	9+	9	9+	9	9+	9+	9+	9+	4	9+	9	9	9+	9+	9	2	9
10	-	-	-	9+	-	-	1	9	-	5	9+	-	-	8	9+	9	9+	9+	9	9	9+	9+	9	9+	9+	9+	9+	7	9+	9	9	9+	9	9	1	10
1	-	-	-	9+	-	-	-	8	2	1	9+	-	-	5	9+	8	9	9+	8	7	9+	9+	9	9+	9+	9+	9	9	9+	9	9+	9	9+	9	8	11
2	14	-	÷	9+	-	(-)	2	7	÷	Ξ.	9+	-	-	1	9+	8	8	9	9	8	9	9+	9	9+	9+	9+	9	9+	9+	9	9+	9	9+	9	9	12
.3			-	9+	-	-	-	7	÷	-	9+	-	-	-	9+	8	2	9+	9	8	9	9+	9	9	9+	9+	9	9+	9+	9+	9	2	9+	9	9	13
4	2	-	22	9+	-	2		8	2	-	9+	4	-	2	9+	9	3	9+	9+	9	9	9+	9+	9	9+	9+	9	9+	9+	9+	9	2	9+	9	9+	14
15	2	-	-	9+	-	-	-	9	-	-	9+	7	-	2	9+	9	5	9+	9+	9	9+	9+	9+	9	9+	9+	9+	9+	9+	9+	9	9+	9+	9	9+	15
16	9	2	21	9+	2	_	-	9+	7	-	9+	9	4	4	9+	9+	8	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	1	9+	8	9+	16
17	9+	-	-	9+	6	-	-	9+	8	-	9+	9+	8	7	9+	9+	9	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	6	9+	9+	6*	8	7	9+	17
18	9+	7	-	9+	8	3	2	9+	9	1	9+	9+	9	8	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	-	9+	9+	1	4*	9	9	18
19	9+	7	-	9+	8	6	6	9+	9	5	9+	9+	9	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9	9+	-	9	9+	9+	2*	4	9	19
20	9+	8	1	9+	9	6	8	9+	9	8	9+	9+	9	9+	9+	9+	9+	9+	9+	9+	9+	4	9+	9+	8	9+	9	9	-	7	9+	4	-	3*	4	20
1	9+	8	6	9+	9	6	9	9+	9	9	9+	9+	9	9+	9+	9+	9+	9+	9+	9+	9+	-	9+	9+	8	9	8	9	2	1	9+	8	-	3*	2*	21
2	9+	7	8	9+	9	1	9+	9+	9	9+	9+	9+	9	9+	9	9+	9+	9+	9+	9+	9+		9	9+	9+	6	8	7	-	6	9+	9	-	4*	2*	22
3	9+	8	9	9+	9	2	9+	9+	9	9+	9+	9+	8	9+	9	9+	9+	9+	9+	9+	9+	$\underline{\nabla}$	9	9+	9+	5	9	12	20	4	9+	9	27	4*	1*	23
	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FR	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	



Detailed Propagation Predictions

10 Meters: Nov., Morocco (Casablanca), for SSN = Very High, Sigs in S-Units. By N6BV, Al

	UTC	>																						
Zone	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
KL7 = 01	-	-	-	-	-	-	-	-	-	-	-	-		-	÷.	-	-	1	4	-	-	-	-	-
VO2 = 02	-	10	-	-	-	-	-	-	-	-	1	8	1	2	3	3	1	3	4	5	1*		-	1.7
W6 = 03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	÷.	5	9	9	9	4	-		-	-
W0 = 04	-	12	2	- 2	-	-	-	-	1	-	-	-	2	8	9	9+	9+	9+	9	8	1	-	-	1
W3 = 05	-	-	-	<u></u>	-	-	-	-	-	-	-	-	9	9	9+	9	9	9	9	8	3*	2*	2*	1*
XE1 = 06	-	-	-	-	-	-	-	-	-	-	-	-	1	9	9	9	9	9	9	9	4	-	-	-
TI = 07	-	_	2	-	-	-	-	_	_	_	-	2	9	9	9	9	9	9	9	9	9	6	1	-
VP2 = 08		- 22									8	9+	9+	9	9	9	9	9+	9+	9+	8	1		
P4 = 09	-			-	0.22	0.22		1.0		2	č	9+	9+	9	9	9	9+	9+	9+	9	9	6	1.20	12
HC = 10	1		- 2									7	9	9	9	9	9	9	9	9+	9	9	6	4
PY1 = 11	9+	9	8	8	0.075	0.0100	1000			9	9	9	9	9	9	9	9	9	9+	9+	9+	9+	9+	9+
CE = 12	9+	9+	9	6	- 24	12			8	-	9	9	9	8	8	9	8	9	9	9+	9	9+	9+	9+
LU = 13	9+	9+	9+	8					°	2	0.000	9	9	9	9	9	9	9	9+		9+	9+		9+
		9+	9+	8	-	-	-	-	7		9		-	-	-	-	9+		9+	9+	9+	9+	9+	9+
G = 14	-	-	-	-	-	-	-	-		9+	9+	1.22	9+	9+	9+	9+		6	-	-	-	-	-	-
I = 15	-		- T		-		-		9	9+	9+	9+	5	6	6	9+	5	1		- 7		-	-	1
UA3 = 16	-		-	- 7	-	-	•	-	6	9+	9+	9+	9+	9+	9+	6	•	-	-	-	-	-	-	-
UN = 17	-	-	-	-	-	-	-	7	8	9	9	8	8	6	8	-	-	-	-	-	-		-	-
UA9 = 18	-	-	5.	-	-	-	-	4	9	9	9	9	8	7	1	-	-	-	-	-	-	-	-	-
UA0 = 19	2*	2*	1*		-	-	-	-	9	9	5	-	-	-		-	-	-	-		-	-	-	2*
4X = 20	1	17			-		7	2	9+	9+	9+		2	4	9+	9+	2*	1*	-	9	8	7	4	1
HZ = 21	-	1	-	-	-	-	-	9+	9+	9+	9	9+	9+	9+	9+	9+	9+	8	4*	2*	-	-	-	-
VU = 22	-	-	-	-	-	-	2	9	9	9	9	9	9	9+	8	5	-	-	-	-	-	-	-	-
JT = 23	-	1.0	-	-	-	-	-	5	9	9	9	9	7	-	-	-	-	(-, -)		-	-	-	-	10 m
VS6 = 24	-	100	-		-	-	-	9	9	9	9	9	9	9	4	-	-			-	-		-	1*
JA1 = 25	4*	2*	1*	-	-	-		1	9	8*	4*	3*	1*	1*	-	-	-	-	-	-	-	-	2*	2*
HS = 26	-	24	-	-	-	-	2	9	9	9	9	9	9	9+	9	9+	9+	9+	6	2	-	-	-	-
DU = 27	-	12		-	-	1.00	-	9	9	9	9	9	9	9	9	9	8	2	-	-	-	-	-	1*
YB = 28	-	10	-		-	-	2	8	9	9	9	9	9	9	9+	9+	9+	9+	9+	9	7	1	6	4
VK6 = 29	6	7	-	-	-	-	6	7	8	8	7	7	6	1	-	3	4	3	1	-	-		-	1
VK3 = 30	5	4	2	1	_	_	3	2	2	2	120	_	-	_		-	-	-		_	_	-	-	2
KH6 = 31	2*	2*	12	- 23	-	2 - 2	-	5*	2*	1*	1*	122	1		-	-	120	7	9	3*	3*	3*	1*	1*
KH8 = 32	4*	3*		2	-	-		1*	-	7	8	6	7	5	1	-	-	7	9	4	1*	2*	4*	4*
CN = 33	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
SU = 34	2	1	2	2	-	-	7	1	9+	9+	9+	4	3	6	9	9+	4	5*	9	9+	9	9	7	4
6W = 35	9	8	6	2			1		9+	1*	2	-	2	č	1		-	-	2	5	4	9	9	9
D2 = 36	6	7	8	1				7	5	2	2	1	2	2	2	1	2*	1*	7	6	-	1	í	5
5Z = 37	9	8	2				5	9+	9+		9+	6	6	9+	202		1	6*	í	1	4	8	9	
52 = 37 ZS6 = 38	9	8	5		-		5	9+	9+	9+ 9	8	9	9	9+	9+ 9+	6 9+	9+	9+	9+	9+	9+	8 9+	9+	9
	1.5	4	5				1000	100	- TO	-		1000	1.77	- C	5.033				3 10 10	20.00		0.000		9
FR = 39	8	4	1		-	-	5	9	9	8	9	9	9	9	9+	9+	9+	9+	9+	9+	9+	9+	9+	8
FJL = 40	-	-	-	-	-	-		-	-	2	8	9	9	9+	9	5		-	10	10	-	-	-	
Zone	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
		>	Tarana ara							1122204-27					 27 232.4 		-000004455							
Expected	eim:	al 1.	evel.	G 11 G	ing	1500	W a	nd 4	-010	ment	Vac	ic a	t 60	fee	t at	ear	h et.	atio	n					

Expected signal levels using 1500 W and 4-element Yagis at 60 feet at each station.

