

Design, Construction and Maintenance of Antennas and Towers for Storm Survival and Long Term Reliability

Practical Checklists of Best Practices

Frank Donovan, W3LPL

A Typical Guyed Tower and Antenna

Tower Sections Design and Construction Checklist

✓ Adequate load capacity for current <u>and future</u> use

- ✓ Antenna loads (especially unbalanced or unidirectional)
- \checkmark Transmission lines and other cables
- ✓ Adequate load capacity for environmental conditions
 - ✓ Wind loads (especially site-specific conditions)
 - ✓ Ice loads (especially site-specific conditions)
- \checkmark Unidirectional or unbalanced ice and wind loads
- Corrosion protection (including site-specific needs)

Beware of used or corroded tubular tower sections

Tower Sections Maintenance Checklist

✓ Inspect all tower sections one year after installation

- \checkmark At least once every three years after initial inspection
- ✓ After all very serious storms
- \checkmark After any structural damage to the tower
- ✓ Check plumb and twist of the tower
- ✓ Pay special attention to damaged, loose, missing or corroded:
 - \checkmark Diagonal and horizontal trusses, welds and hardware
 - ✓ Especially near guy attachment points

Keep tubular tower weep holes clear of obstructions

Tower Foundation Design and Construction Checklist

✓ Use the manufacturer's recommended design

PVR(

na Clu

- \checkmark Provide adequate depth for local frost conditions
- \checkmark The top of the foundation should be 6 inches above grade
- ✓ Tubular tower sections embedded in a concrete foundation require careful attention during construction
 - ✓ Each leg must drain into gravel at the bottom of the foundation
 - ✓ Concrete embedded tower sections are a risky practice in salt water or industrial pollution atmospheric environments

Prevent corrosion at the concrete-to-tower interface

Tower Foundation Maintenance Checklist

- \checkmark Inspect at least once every three years
- \checkmark Pay special attention to
 - ✓ Corrosion at the tower-to-concrete interface
 - \checkmark Standing water on the foundation
 - \checkmark Dirt and debris accumulation on the foundation
 - ✓ Settling or cracks

Dirt and debris accumulation on the foundation can lead to catastrophic tower failure

Guy Anchor Design and Construction Checklist

✓ Guy anchor failure is one of the most common causes of catastrophic tower failure

- ✓ Determine if you have corrosive soil conditions in your area
- \checkmark Adequate guy anchor depth for local soil conditions
- ✓ Use heavy duty galvanized, forged hardware
- ✓ Use tower manufacturer's recommended guy anchor design
- ✓ Corrosive soils require guy anchor professional design
- ✓ Elevated guy anchors require professional design

Do not use light duty home owner grade hardware

Guy Anchor Maintenance Checklist

- \checkmark Inspect at least once every three years
 - \checkmark Dig down at least six inches to inspect for anchor rod corrosion
 - ✓ Missing hardware
 - ✓ Loose hardware
 - ✓ Corroded hardware

Anchor rod corrosion is a very serious threat to tower survival

Guy Wire Design and Construction Checklist

- ✓ Use heavy duty galvanized, forged hardware
- ✓ Use tower manufacturer's recommended guy wire size
 - ✓ Smaller guy wire risks catastrophic tower failure
 - ✓ Heavier guy wire reduces the tower's load capacity
- \checkmark Tension the guy wires to 10% of breaking strength
 - ✓ Less than 7% risks galloping of the guy wire and excessive tower movement in the wind
 - ✓ Greater than 15% risks guy wire vibration and reduced tower load capacity
- Guy wire vibration dampening hardware may be needed
 Do not use light duty home owner grade hardware

Guy Wire Maintenance Checklist

- \checkmark Inspect three months after initial installation
- ✓ Inspect at least once every three years after initial inspection
- ✓ Inspect after all very serious storms
- ✓ Check guy wire tension (7 to 15% of breaking strength)
- ✓ Check for
 - \checkmark Damage from rubbing or chaffing of guy wire
 - ✓ Corrosion
 - ✓ Loose hardware

Significantly corroded guys risk catastrophic failure

Guy Attachment (Tower and Anchor) Design and Construction Checklist

- \checkmark Guy force must be properly distributed to the tower structure
 - \checkmark Use the tower manufacturer's recommended design
- ✓ Heavy duty professional grade forged, galvanized hardware
- ✓ Install turnbuckle safety wires
- ✓ Use articulated guy wire connections
 - \checkmark 10 degrees of free guy wire movement in any direction

✓ No chaffing or damage to the guy wire or hardware from frequent tensioning, loosening and movement of the guy wire in the wind

Use the manufacturer's recommended guy attachments

Guy Attachment (Tower and Anchor) Maintenance Checklist

- \checkmark Inspect at least once every three years
- ✓ Check all guy attachment hardware
 - ✓ Missing or loose turnbuckle safety wires
 - ✓ Loose, missing or corroded hardware
 - ✓ Guy wire chaffing or rubbing
- \checkmark Integrity of the tower in the vicinity of the attachments
 - ✓ Damaged tower structural components
 - ✓ Broken welds
 - ✓ Loose or missing hardware

Replace all degraded attachment hardware

Lightning Protection Design and Construction Checklist

- \checkmark Use at least three ground rods at the tower foundation
 - ✓ Separated 20 feet from each other
- ✓ One ground rod at each guy anchor
- ✓ 8 foot galvanized ground rods (10 foot length preferred)
- ✓ Large diameter (2/0) solid, tinned ground wire
 - \checkmark Rugged, durable connections to the tower and guys
 - ✓ Buried connections to ground rods (Cadweld preferred)
 - \checkmark Buried wire between ground rods and tower foundation

Do not use braided ground wire !

Lightning Protection Maintenance Checklist

✓ Inspect all ground wire connections at least once every three years

- ✓ Loose or missing hardware
- ✓ Missing wires
- ✓ Broken wires
- ✓ Corrosion

Repair all damaged or missing ground wires or connections

Antenna Rotator Design and Construction Checklist

- \checkmark Analyze the antenna load capacity of the rotator
- ✓ Use adequate size control wire
 - \checkmark Consider the total length of the control cable
- ✓ Rotator mounting hardware should be appropriate for the tower
- ✓ Use galvanized steel or stainless steel hardware
 - ✓ Use anti-galling compound for stainless steel hardware

An under rated rotator will fail prematurely

Antenna Rotator Maintenance Checklist

- ✓ Inspect three months after installation
- ✓ Inspect every three years after initial inspection
- ✓ Check:
 - \checkmark Excessive mechanical play in the wind
 - ✓ Loose or missing hardware
 - ✓ Corroded hardware

An under rated rotator will be a major maintenance problem

PVRC PConnesting Club Est. 65 PCONNESTING PCONNESTIN

Antenna and Mast Design and Construction Checklist

Appropriate antenna and mast for wind and ice conditions
Heavy duty or homebrew antenna when needed
Use only galvanized or stainless steel hardware
Use anti-galling compound for stainless steel hardware
Use vibration dampening of antenna elements to avoid premature failure

 \checkmark Well designed transmission line connections to the antenna

 \checkmark Electrical and mechanical

✓ Well designed boom truss with professional quality hardware

Select your antenna for local wind and ice conditions

Antenna and Mast Maintenance Checklist

Inspect at least once every three years

- ✓ Loose or missing antenna hardware
- ✓ Loose or missing boom truss hardware
- ✓ Corroded hardware
- ✓ Damage from ultra violet radiation
- \checkmark Transmission line electrical connection to the antenna
- \checkmark Transmission physical connection to the antenna
- ✓ Damaged structural components

Transmission line electrical connections to the antenna are often damaged by wind and rain

Transmission Lines and Other Cables Design and Construction Checklist

- ✓ Select appropriate cables local ultraviolet conditions
- ✓ Use appropriate hardware for tower attachment
 - ✓ Consider local ultraviolet, wind and ice conditions
 - \checkmark #12 solid insulated copper wire is a good choice
 - \checkmark High quality electrical tape (Scotch 88) is a good choice
 - ✓ Electrically connect the transmission lines to tower
 - \checkmark top and bottom of tower
 - ✓ Lightning protection of rotator and control cables at the tower base

Fasten cables to the tower with high quality attachments

Transmission Lines and Other Cables Maintenance Checklist

 \checkmark Inspect at least once every three years

- ✓ Loose, missing or UV damaged cable attachments
- ✓ UV damaged cables

✓ Transmission lines, cables and connectors damaged by water intrusion

✓ Best inspected by using a time domain reflectometer,
 VSWR meter or other appropriate techniques

✓ Good records are very helpful

✓ Failed lightning protection

Degraded transmission lines seriously affect station performance

Summary

✓ These checklists will help you to avoid common design and construction errors

 \checkmark Inspections are an important contributor to long term tower and antenna reliability

✓ Conduct major inspections

 \checkmark during the first year after construction

 \checkmark every three years after initial inspection

✓ After very serious storms

Inspections are a very important factor in long term tower and antenna reliability