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Introduction 
 
A key factor in determining the radiation efficiency of verticals is the power loss in the soil  around 1 
the antenna.  Minimizing this loss is the purpose of the ground system associated with a vertical. 
 
A great deal of analytical and experimental work has been done over the past 100 years on the 
design and performance of ground systems for verticals.  The most influential for amateurs  was the 
work by George Brown in the 1930's which set the standard for broadcast (BC) antennas to this day.   
For the most part, discussions in amateur literature are direct extensions of BC experience [1-3].  
Hams have tended to view the BC work as gospel. Maybe it's time to take a look at just how well BC 
work applies to HF applications. 
 
Brown [4,5] and other workers [6-9] were primarily  concerned with frequencies where most soils are 
basically resistive - i.e. BC band and down.  Making the assumption that the ground is resistive 
greatly simplifies the analysis and is usually valid at those frequencies at least for any soil you would 
like to have for a BC station.  Hams on the other hand are more interested in HF where soil 
characteristics become a combination of reactive and resistive.  This changes the loss characteristics 
and, to some extent, the  design of the ground system2.   
 
To make this discussion more readable I have eliminated most of the math 3. The few math 
expressions which do appear can be passed over without losing the gist.  Important ideas are 
illustrated using graphs 4. 
 
Overview of Ground Loss 
 
In Brown's  work, ground losses were calculated by assuming the soil was basically resistive.  The 
current in the soil was determined from the magnetic field intensity along the ground surface (H) and 
the relative distribution of current between the soil (Ie) and the ground system (Ir).  The effective 
resistance (R) was determined from skin depth and soil conductivity.  Ground loss was simply Ie2R.  
This scheme took into account the change in loss due to the reduced skin depth as  frequency is 
increased but it did not include the complex impedance of soil which becomes important at HF.  The 
expression for skin depth used was also an approximation for a good conductor not a lossy dielectric 
which soil is at HF. 
 
Frank Abbott [19] introduced a much more general method for calculating ground loss that is valid at 
HF 5.  His method is what I use.  We can compare the two calculation methods by simply taking the 
ratio of the power loss a 'la Abbott divided by that from Brown as shown in figure 1. 

                                            
1 roughly within a wavelength 
2 Brown, Lewis and Epstein did their field measurements at 3 MHz but the basic calculations were for resistive ground 
which is valid at 3 MHz only for very good ground.   
3 For those who want the math I can supply it on request. 
4 I can provide additional graphs on request. 
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5 It is interesting that 99% of Abbott's paper uses a resistive ground approximation.  This is not surprising since he was 
concerned with BC antennas.  Only in one short paragraph on page 847 does he give the general expression for power 
loss in complex ground, which I have used. 



 
Figure 1, Comparison of ground losses between Abbott and Brown 

 
As we would expect, at low frequencies the two approaches are essentially the same especially for 
better grounds which are conductivity dominated.  However, at HF the actual loss is larger than what 
Brown predicts.  In fact if we go high enough in frequency the loss ratio is 2:1!  The higher the 
conductivity the longer Brown is reasonably accurate but as you go higher in frequency the error 
grows.  
 
There is a second difference between Abbott and Brown: the current division between the radial 
system and ground.  This is important because the loss is determined by the current in the soil (Ie) 
which is (hopefully!) reduced by the ground radial system.  Because ground loss is proportional to Ie2, 
the reduction in loss is very sensitive to the division ratio.  Brown's work contains an expression for 
this ratio which differs significantly from Abbott's.  Figure 2 shows a comparison of radial current 
predictions between Abbott, Brown and NEC4 for an example case.  Other ground types, radial 
numbers, etc, show similar differences.  Abbott and NEC4 are in good agreement.  Brown however, 
says there is much more current in the radials which would give significantly lower ground loss.   
Monteath [23] has commented on Brown's radial current expression saying it was "suspect" and in 
general we do not see Brown's expression in later work.  Abbott's approach has been widely adopted 
in the professional literature. 

 
Figure 2, Comparison of predicted radial current between Abbott, Brown and NEC4 
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Before getting into the details of determining Rg we need to take a look at the H-fields near the 
antenna which are inducing the ground currents and the concept of ground impedance.  I will be 
ignoring the E-field losses which are usually small for antenna heights of  0.125 - 0.25 wl 
(wavelength) which is a normal range for ham antennas.  Be warned however, for shorter antennas 
the E-field losses are significant and cannot be ignored.  
 
E and H-fields around a vertical 
 
To assist in making comparisons between antennas of different heights (h) 6, the majority of my graphs 
will assume constant radiated power (Pr).  This is equivalent to 36.6 W  into an idealized 0.25 wl vertical 
with the radiation resistance (Rr) equal to 36.6 Ohms and base current (Io) of 1 Arms.  For different values 
of h we will change Io to compensate for the change in Rr to keep Pr constant at 36.6 W.  This is an 
approximation but it gives a feeling for the effect of h on ground losses 7.  In the end when we calculate 
the effective ground resistance (Rg), the values for Io cancel out but they are handy in the discussion 
before we get to that point. 
 
Ground currents are directly proportional to the magnetic field intensity (H) at the ground surface.  For a 
given h we can calculate H and figure 3 is an example of H for verticals with h in the range of 0.05 to 0.25 
wl and f = 1.8 MHz, over perfect ground.  

 

 
Figure 3, H at the ground surface for various antenna heights and constant Pr = 37 W. 

Notice that as we shorten the antenna 8, H increases near the base.  This means greater ground loss  as 
we shorten the antenna at a given frequency for a given ground system.  There will also be a change in H 

                                            
6 usually in wavelengths 

7 A more detailed discussion of the effect of antenna height and height-to-diameter ratio on Rr  and the corresponding 
values of Io can be found in reference 22.  

 3
8  for the same Pr 



with frequency.  An example is given in figure 4.  We see that for a given h and r 9, H goes down 
somewhat as we go up in frequency.  In the special case of h = 0.25 wl, H is independent of frequency.  

 

Figure 4, H  at ground surface over perfect ground 
 
Typically, the ground system  radius is in the range of 0.125 to 0.50 wl.  However, as we go up in 
frequency the wavelength gets shorter.  Therefore the physical size of the ground system usually shrinks 
linearly as we go up.  However, as we can see from figure 4, H at a given physical distance doesn't 
dropped linearly with frequency. 
 
The field intensities shown in figures 3 and 4 were calculated assuming perfect ground.  This is normal for 
BC frequencies and below and introduces little error close to the antenna.  However, as we go up in 
frequency that assumption becomes less valid.  Norton [10] and Sommerfeld [11] have shown that there can 
be substantial attenuation of the field near the base of the antenna at frequencies where the dielectric 
constant of the soil becomes important.  For most grounds that would be at 1.8 to 3.5 MHz.   
 
Norton introduced an attenuation factor to account for this.  However, we have to be careful in applying 
this factor.  First, it's value moves back towards one as we add radials to the ground system.  It may be 
significant when there is no ground system but it goes away 10 for large ground systems.  Unfortunately 
the exact expression (without Norton's approximations) is very complex and I have not taken the time to 
work through it.  In any case it is strictly valid only for the case of no radials.  I have elected to use the 
perfect-ground field intensities without the attenuation factor.  The result is that for small ground systems, 
the loss estimates will be a bit high as we go up in frequency but for larger ground systems the error is 
small.  This approximation should not significantly affect the design of the ground systems.  I will be 
checking that conclusion in future work. 
 
Ground Impedance 
 
                                            
9 in this example r is in feet! 
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10 Over the ground system! 



Ground impedance (Zg) is analogous to the surge impedance (Zo) of a transmission line.  The connection 
being that a wave traveling along a transmission line is similar to a wave propagating in soil. We can do a 
similar thing with soil and derive what we call the intrinsic impedance: 

 
R1 represents the loss component and we will use it to compute the ground loss.  A graph of R1 for various 
ground types is given in figure 5.  Note how R1 is rising rapidly below 3 MHz. 

Figure 5, R1  versus frequency for various grounds 
 
Ground Loss Calculation 
 
Abbott's expression for ground loss per unit area (Pg') without a ground screen or radials is: 
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From Pg' we can calculate total power loss out to a given radius in the absence of a ground system.  An 
example for average ground and f = 1.8 MHz is given in figure 6 11.   

Figure 6, Integrated power loss within a given radius for different antenna heights 
 

This clearly shows the effect of r and h on ground loss - the shorter the antenna the greater the ground 
loss will be for a given Pr.  This nicely shows just how inefficient a vertical with a single ground stake 
would be.  The ground loss is equal or even much greater than the radiated power.  Note also that as we 
go away from the base, the rate of increase of power loss drops rapidly with much of the loss occurring 

within 0.125 wl. 
 

Figure 7, Integrated power loss within a given radius at different frequencies. 
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11 the current at the base of the antenna is adjusted to keep the radiated power (Pr=Io2Rr) constant at 37 W as the 
antennas are shortened and Rr decreases.   



 
For a given h we can plot a similar graph for different frequencies.  An example of this given in figure 7. 
We can see that for the same ground constants, ground loss increases with frequency.   
Once we have the total ground loss we can determine the value for Rg from Pg and Io12.  The effect of 
height, ground screen radius and frequency can be seen very nicely on graphs of Rg like those shown in 
figures 8 and 9.   

 
Figure 8, Ground resistance with a perfect ground screen 13 of varying radius 

 

 
Figure 9, Ground resistance with a perfect ground screen versus frequency 

 
If we set h= 0.25 wl and let frequency be the parameter, as shown in figure 9, we can clearly see the 
effect of higher frequencies on ground loss.  As we go up in frequency, for the same height and ground 

                                            
12 Rg = Pg/ Io2 
13 When I say "perfect ground screen", I mean a lossless sheet out to the given radius which eliminates ground loss within 
that radius.  A copper screen would be a close approximation. 
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constants, Rg increases, reducing efficiency for the same ground screen size (in wavelengths).  This 
implies that we should use a larger 14 ground system as we go up in frequency.   
 
However, there appears to be a problem!  Figure 8 seems to contradict the conclusion which we drew 
from figure 6: i.e. that ground loss increases as h is reduced .  In figure 8 Rg goes down as the antenna is 
shortened!  What we have to remember is that Pg = Io2 Rg.  As h is reduced, Rr goes down rapidly so for 
the same input power we must increase Io.  For example, for Pr = 37 W and h = 0.25 wl, Io = 1 Arms.  But 
for h = 0.05 wl and the same Pr, Io = 6.1 Arms so that the Io2 Rg product is actually larger. 
   
This brings up a important observation.  Rg is a means we can use to keep track of ground loss.  Rg is not 
a fixed number for a given ground system but depends on several factors: the details of the ground 
system, ground characteristics, frequency and the geometry of the antenna 15.  
 
A closer examination of the values in figures 8 and 9 appears to expose another problem.  Based on a lot 
of experimental data for BC antenna ground systems over many years, it is generally thought that a 120 
radial system is close to a perfect ground screen and for a ground system with 0.5 wl radials Rg will be of 
the order of two Ohms or less depending on the ground characteristics.  From figure 8 we get Rg = 4.5 
Ohms for h = 0.25 wl and a screen radius of 0.5 wl.  This is more than double what we would expect from 
BC data.  This raises a question "are the calculations believable"?  We can address this question by 
redoing the calculations for frequencies and ground constants more typical of BC practice.   

 
Figure 10, Rg at 680 kHz for various ground characteristics with a perfect ground screen. 

 
Figure 10 shows values for Rg at 680 kHz and h = 0.25 wl.  For r = 0.5 wl, Rg is close to 2 Ohms 
depending on ground characteristics.  Keeping in mind that most BC stations will at least attempt to locate 
their antennas over better than average ground, these numbers are quite reasonable.  Also many BC 
antennas are not a full quarter wave which would reduce the value of Rg further.  This agreement is an 
indication that the calculations are probably reasonable.  

                                            
14 in terms of radius in wavelengths 
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15 height, diameter, top loading, inductive loading, etc 



 
 Ground Current Division Ratio For Radial Ground Systems 
To this point we've assumed either no ground  system or a perfect ground screen.  Obviously a perfect 
ground screen is usually not practical.  The most common ground system for a vertical is a series of radial 
ground wires, on or below the ground surface, arranged symmetrically around the base.    
 
The purpose of the radial system is to divert current from the soil into the radial  conductors which have 
very low loss compared to soil.  We can calculate the current division between a radial system and the soil 
and use this to determine Rg. We do this by assuming that the radial system has an impedance Zr, again 
analogous to a transmission line.  Zr is in parallel with Zg so Ie is divided between the two impedances 
depending on their relative values: 
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F1 represents the portion of  Ie (the current that would flow in the ground if there were no ground system) 
and  Ig is the flowing in the ground when the radial system is present.  
 
Because the loss varies as Ig2, as long as |Zr| < 0.1 |Zg| the ground loss will be < 1% of what it would be 
without the radials.  Even if |Zr| = |Zg|, dividing the current equally between the soil and the radials, the loss 
will still be only 25% of what it would be without the radial system.   Zr is a function of the distance 
between the radials (d) at a given point and d will be increasing as we go away from the base of the 
antenna, increasing |Zr|.  A typical graph of |Zr| is shown in figure 11 for various numbers of radials (N).  
Although a frequency and wire size are indicated on the graph, the values actually vary quite slowly as we 
change either frequency or wire size so these are not critical.   
 
Keep in mind that as we go away from the base of the antenna the radial wires are further apart.  If we 
take two adjacent radials and look on them as a two wire transmission line, we would see that the 
impedance of this transmission line will increase as we as we move the wires further apart..  In an 
analogous way, the impedance of the radial system (Zr) increases as we move away from the base.  Since 
Zg is constant, the Zg/Zr ratio decreases so that less of the induced current is in the radial system and 
more in the ground. 
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Figure 11, Radial system impedance as we move away from the base of the antenna 

 
We can also graph |Zg| as shown in figure 12.   

 
Figure 12, Magnitude of the ground impedance, Zg. 

 
From figure 12 we can see that for average ground and f = 1.8 MHz, |Zg| ≈ 50 Ohms.  Plotting the 50 Ohm 
line on figure 11 we can get a feeling for the effectiveness of various numbers of radials (N).  
 
We can combine the information in figures 11 and 12 to create a graph of the portion of Ie flowing in the 
radial system, as a function of radius and N.  An example is given in figure 13.  
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Figure 13,  Proportion of total current in the radial system versus distance from the base (r). 

 
The radial currents decrease as we move away from the base because the spacing between the radial 
wires is increasing which increases Zr.  The fewer the radials, the more rapidly Ir decreases. This means 
that close to the base of the antenna most of the current is in the radial system, but as we move away 
from the base the current increasingly flows in the soil. When only a few radials are used, the outer ends 
of the radials contribute little to reducing ground loss.  
 
Figures 11-13 suggest a possible modification of standard radial systems to use less wire for a given Rg.  
When a large number of radials are used, near the base of the antenna the radials are very close 
together, frequently lying on top of each other. This is much closer than necessary to minimize loss.  At 
1.8 MHz a 128 1/4 wl radial system will require about 25,000' of wire.  Not inconsequential!  For average 
ground we can reduce the ground loss to 10% or less by keeping the radial system impedance below 23 
Ohms for as long as possible.  A simple calculation shows that we can meet this criterion by starting with a 
32 radial system.  At 30' out from the base we add a ring of wire and another 32 radials.  Then at 60' 16 we 
add another ring and 64 more radials.  The result is essentially the same performance but we need about 
5,000' less wire.  Of course this arrangement would be a pain in the neck for a buried system but if the 
radials are lying on the ground surface as is so often the case for amateur antennas, then it may well be 
worthwhile.  This idea works even better over poor soils where Zg  is higher but is less useful for good soils 
with lower Zg.  I know that in the ground system for my 160 m array, things got pretty crowded around the 
base as the radial numbers grew.  I found it very convenient to attach new radials to the earlier set away 
from the base.  
 
Direct calculation of Rg 
 
Since we now know F1, H, R1 and Io from the operating frequency, ground constants and the dimensions 
of the antenna and ground system, we can then calculate Rg directly at HF: 
 

                                            

 11
16almost half way out on the radial 



 
 
 The indicated integral is easily done in Excel.  A typical example for h = 0.25 wl is given in figure 14.  
Note that these values are substantially higher than we are accustomed to seeing from BC work. 

 
Figure14, Rg versus radial length for various numbers of radials (N).   

 
We can see that with only 8 radials, Rg falls a few ohms as we lengthen the radials, but is essentially flat 
by 0.15 wl. There is no point in making radials longer because there is little current in the outer portions 
and Rg is essentially constant beyond 0.15 wl. As we increase the number of radials, we gather more 
current further out. The result is cumulative—more radials allow longer radials to be effective and both 
together reduce ground loss.  For 128 radials lengths of 0.5 wl are useful. 
 
Figure 14 has some dashed lines.  These lines represent constant total wire length in the radial system.  
With a given length of wire, you have a choice of a few long radials or lots of short radials.  This idea was 
pointed out to me by John Stanley, K4ERO [2], and has been explored in detail by Bob Sommer, N4UU [21] 
and Al Christman, K3LC [25] who have shown  there will be an optimum number of radials which gives the 
lowest Rg for a given total length of wire in the radial system.  For example, using figure 14, we could start 
with 8 one wavelength radials.  We could then chop this wire up into 16 half-wavelength radials or 32 
quarterwave radials.  Notice that as we use more but shorter radials Rg falls to a minimum when N= 32.  
Going further to N= 64, Rg increases slightly.  The other dashed lines give examples of using even more 
wire.  In all cases there is an optimum N, for a given total wire length.  As we use more wire the radial 
length associated with the optimum N increases.  
 
Along with the radial currents shown in figures 2 and 16, I also recorded peak gain from the NEC 
modeling.  We can also use this to show the effectiveness of radial systems.   A typical example is shown 
in figure 15.   
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Figure 15, Peak gain versus radial system size 

 
We can compare the values for Rg between NEC4, Abbott and Brown as shown in figure 16. 

 

 
Figure 16, Rg comparison for different methods. 

 
The correlation between NEC4 and Abbott is quite good although NEC4 gives a slightly lower value.  
Brown is substantially lower as we would expect from figure 2. 
  
Figure 17 is an Rg graph for h= 0.15 wl. For shorter antennas, the initial drop in Rg is more rapid and the 
curves flatten out sooner. This implies that somewhat shorter radials are useful with short antennas. 
However, given the high losses, it is still a very good idea to use lots of radials with short antennas. 
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Figure 17, Rg for h=0.15 wl 

 
What about the effect of different ground characteristics on Rg?  Figures 18 and 19 show the effect of 
different grounds for the extremes of 8 and 128 radials.   

 
Figure 18, Effect of different ground characteristics on Rg, N=128. 
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Figure 19, Effect of different ground characteristics on Rg, N=8. 

 
 

 
Figure 20, Variation in Rg with frequency and radial length. 

 
Figure 20 nicely illustrates the increase in Rg as we go up in frequency for the same antenna and ground 
system dimensions in wavelengths.  
 

 
Effect of radial system on Rr 
 
Throughout this discussion I have tried to relate the calculated values to experimental values where I 
could.  There is one additional point we need to address which concerns the interpretation of experimental 
data.  In the past it has been common practice to determine Rg in a given installation by measuring the 
base impedance and then subtract the radiation resistance for the same antenna over perfect ground from 
that measurement and assume the remainder represents ground resistance.  I think that may not be 
correct in many cases. 
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Figure 21 gives an example using NEC4 modeling where we vary the buried 17 radial length  at a given 
frequency. 

 
Figure 21, Input resistance from NEC4 modeling 

 
At first glance this graph is crazy!   For example, if we assume that Rr = 36.6 Ohm, we see that for the 
larger values of N,  the input resistance (Ri) is substantially less than this for some radial lengths, implying 
negative Rg.   Notice also that for N=4, lengthening the radials increases Rg right off the bat!  For larger 
numbers of radials, initially lengthening the radials does reduce the input resistance but when the radials 
are long enough, up goes the resistance again.  If we interpret the input resistance to consist of Rr over 
ideal ground plus Rg due to ground losses then these curves don't make sense.  
 
The idea that we can simply subtract the ideal Rr from Ri to determine Rg may not be correct.  The radial 
system has an effect on  Rr even when the radials are buried.  As we change the number and length of 
radials, Rr oscillates around some value and the range of variation can make Rg appear to be lower or 
higher than it really is.  Figure 22 is an example of this oscillation for a 0.25 wl vertical over a perfectly 
conducting disk of radius "a", in free space, as we vary the radius.  This graph is taken from Leitner and 
Spence [26]. The graph shows both experimental and calculated values. 

 
Figure 22 

                                            

 16
17 12" in this case. 



Rr oscillates around 36.6 Ω by about ± 5 Ω.  In the graph, ka = 2Pi/wavelength, so ka=5 is about 0.8 wl.  
This is a highly idealized case but when we repeat it using radial wires rather than a conducting disk, the 
oscillations in Rr get even larger, especially for small N.  When we immerse the radial system in ground, 
the oscillations are damped but still present.  For poor ground the damping is not all that great as we saw 
in figure 21.  For high conductivity ground the oscillations almost disappear as shown in  figure 23. 

 
Figure 23, Variation in Ri over very good ground 

 
For ground systems where the radials are < 0.5 wl, Ri in free space can be much less than 36.6 Ohms.  
We can gain some insight by comparing Ri for free space to Ri with radials in the ground with the values 
for Rg from Abbott subtracted.  Figure 24 is an example for 64 radials.   

 

 
 

Figure 24, Comparison of Ri in free space and Ri -Rg for buried radials 
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Figure 24 is the result of running a model of the antenna  in free space on NEC4, and then repeating the 
run with the radials buried in average ground.  I then subtracted the values for Rg obtained from Abbott's 
equations.  The correlation is not perfect but it is close 18.  
 
It turns out that I'm not the first to note this.  In a 1936 IRE paper, Hansen and Beckerley [24] calculated Rr 
directly from the radiated power over real ground.  What they show is the effect of ground on Rr for a 
range of ground constants. For perfect ground they get 36.6 Ohms but for representative real grounds, 
values for Rr are in the range of 16-25 Ohms for h=0.25 wl.  This agrees nicely with the values in figure 
24.  
 
It appears to me that if you want to estimate Rg from a measurement of input resistance at the base of a 
vertical, then you need to use the free space value for Ri derived from the actual radial system and not the 
value derived from the vertical over perfect ground.  This represents a considerable departure from 
conventional wisdom and I realize a good deal more evidence than shown here will be needed before this 
idea can be accepted. 
 
Summary 
 
If we want to retain efficiency in a vertical as we go up in frequency we must use a larger ground system 
than conventional wisdom dictates based on BC experience.  Of course when we go from say 1.8 MHz to 
3.5 MHz, the wavelength is cut nearly in half, so scaling the ground system gives one physically half as 
large.  What I'm suggesting is that we do not scale the ground system linearly but make it proportionately 
larger as we go up in frequency.   
 
For example, over average ground, at 1.8 MHz and h = 0.25 wl, we can have Rg = 10 Ohms with N=128 
and r = 0.2 wl.  At 3.5 MHz to obtain the same Rg, for the same N, we have to increase r to 0.35 wl.  Now 
because the wavelength is essentially divided by 2, the total wire in the 3.5 MHz ground system is still less 
than that for 1.8 MHz and the physical radius of the ground system is less, but the 3.5 MHz radial system 
is still larger than we would ordinarily use at that frequency.  Depending on the character of the soil, it is 
possible there may be some increase in soil conductivity as we go up in frequency which might 
compensate a bit.  But even still I would be more aggressive with my HF ground systems than is common 
practice.   
 

                                            
18 I ran several different comparisons with similar results. 


