Ground Loss At HF

Rudy Severns N6LF rudys@ordata.com

Initial Thoughts

- Since the 30's we have had very good analytical and experimental work on which to base BC vertical ground system design.
- This body of work has been adopted as gospel for hams even though we operate at frequencies well above the BC band and very often live with soil charactertics which a BC station would avoid if at all possible.
- Give the wealth of writing on the subject one would think there is little more to be said.

Second Thoughts

- However, a careful review of this work shows that some assumptions were generally made:
 - Soil is basically resistive in character
 - Generally true at BC frequencies but not true at HF where most soils behave more like an R-C network
 - The radial/ground current distribution follows Brown's work
 - This assumption has been questioned for many years
 - Experiment, NEC and other analytical work don't fit Brown
 - We can determine the ground loss resistance by measuring the base resistance and subtracting infinite, perfect ground value
 - Not in agreement with a large body of experiment and analysis
 - Ground system scales with frequency for the same ground constants
 - For a given soil and ground system there is a single value of Rg

A Second Look

- I went carefully through the professional and amateur literature on ground loss and ground systems
- I started with Arnold Sommerfeld in 1909, went through Brown and company, Norton and many others in the 1930's, Frank Abbot 1952, James Wait, Carl Smith, and others in 1950-1970, etc, etc, plus any experimental data I could get my hands on
- Abbott's paper was representative of a more advanced way to calculate ground systems
- Even though 95% of the paper assumed a resistive ground, in one short paragraph he gave the expressions for general ground.
- He also uses a more widely accepted method for calculating the current division between soil and radial system
- Using his expressions I did ground loss and ground system calculations and compared them to Brown and to NEC4

Effect Of Frequency On Ground Loss

Frequency (MHz)

BC Frequency Rg Example

Magnetic Field Intensity Near A Vertical

Magnetic Field Intensity Near A Vertical

¹/₄-Wave Vertical Rg

Radial Current Comparison

Rg Comparison

ON4UN Data Comparison

Optimum Ground Wire Usage

Free Space Rg Comparison

Summary

- For a given set of ground constants (conductivity and dielectric constant) ground loss increases as we go up in frequency
- Scaling the same ground system (radial number and length in wavelengths) as we go up in frequency leads to higher Rg
- The values for Rg at HF are substantially higher than what we would expect from BC data
- To maintain ground system efficiency we need to be more aggressive in the number and length of radials as we go up in frequency